No. 5]

50. Between-topology on a Distributive Lattice

By Yatarō Matsushima

Gunma University, Maebashi (Comm. by K. KUNUGI, M.J.A., May 7, 1959)

1. It is well known that the interval topology of a lattice L is defined by taking the closed intervals $[a] = \{x \mid x \ge a\}$, $(a] = \{x \mid x \le a\}$ and $[a, b] = \{x \mid a \le x \le b\}$ as a sub-basis for closed sets. In [1-2] we have considered the concept of *B*-covers in lattices. For any two elements a and b of a lattice L, let

 $B(a, b) = \{x \mid (a \smile x) \frown (b \smile x) = x = (a \frown x) \smile (b \frown x)\};$ then B(a, b) is called the *B*-cover of a and b, and we write axb when $x \in B(a, b)$. Let $B^*(a,b) = \{x \mid abx\}.$

Now we shall define the *between-topology* on L as follows. By the *B-topology* (B^* -topology) of a lattice L, we mean that defined by taking the sets B(a, b) ($B^*(a, b)$) as a sub-basis of closed sets.

In Theorem 1 we shall prove that the *B*-topology coincides with the interval topology in case *L* is a distributive lattice with *O*, *I*. It is shown in Theorem 2 that L_0 is a topological lattice in its B^* topology when L_0 is a distributive lattice such that for any subset B(a, b) of L_0 , if $x, y \in B(a, b)$, then $a \frown x$ and $a \frown y$; $b \frown x$ and $b \frown y$ are comparable respectively.

E. S. Wolk [5] has defined that a subset X of a lattice L is diverse if and only if $x \in S$, $y \in S$, and $x \neq y$ imply that x and y are non-comparable. He showed that if L contains no infinite diverse set then L is a Hausdorff space in its interval topology.

Now we shall consider a distributive lattice L_0 with O, I satisfying the same assumption as in Theorem 2. Then in Theorem 3 we shall prove, by using the concept of the *B*-covers instead of that of *diverse* sets, that a certain type of L_0 is a Hausdorff space in its interval topology. This theorem is concerned with the Problem 23 of Birkhoff [3].

A mob is defined as a Hausdorff space with a continuous associative multiplication. In Theorem 4 we shall show that a distributive lattice L_0 with O, I such that $L_0 = B(a_0, b_0)$ is a mob with the desired kernel B(a, b) and with the multiplication defined as follows:

 $xy = (a \smile x) \frown (b \smile y)$ for the fixed two elements a, b of L.

2. Lemma 1. In a distributive lattice, $x \in B(a, b)$ if and only if $a \frown b \leq x \leq a \smile b$.

Proof. This is proved in [1, Theorem 3].

Theorem 1. In a distributive lattice L with O, I the B-topology

Y. MATSUSHIMA

coincides with the interval topology.

Proof. By Lemma 1 $B(a, b) = [a \frown b, a \smile b]$. On the other hand, [a), (a] and [a, b] are expressed by the sets of the type B(a, b). Indeed [a] = B(a, I), (a] = B(O, a) and [a, b] = B(a, b).

Lemma 2. In a lattice L, $B^*(a, b) \ni x \smile y$ implies $x \in B^*(a \smile b, b)$ and $y \in B^*(a \smile b, b)$. $B^*(a, b) \ni x \frown y$ implies $x \in B^*(a \frown b, b)$ and $y \in B^*$ $(a \frown b, b)$.

Proof. Suppose that $x \in B^*(a \smile b, b)$; then $(a \smile b) \frown (b \smile x)$ does not equal to b, and hence we have $(a \smile b) \frown (b \smile x) > b$. It follows that $ab(x \smile y)$ does not hold since $(a \smile b) \frown (b \smile x \smile y) \ge (a \smile b) \frown (b \smile x) > b$. Thus either $x \in B^*(a \smile b, b)$ or $y \in B^*(a \smile b, b)$ implies $x \smile y \in B^*(a, b)$, that is, $x \smile y \in B^*(a, b)$ implies $x \in B^*(a \multimap b, b)$ and $y \in B^*(a \multimap b, b)$. Dually $x \frown y \in B^*(a, b)$ implies $x \in B^*(a \frown b, b)$ and $y \in B^*(a \frown b, b)$.

Lemma 3. In a distributive lattice L, if $x \in B^*(a \smile b, b)$ and $y \in B^*(a, b)$, then $x \smile y$ belongs to $B^*(a, b)$. Dually $x \in B^*(a \frown b, b)$ and $y \in B^*(a, b)$ imply $x \frown y \in B^*(a, b)$.

Proof. Since L is distributive we have $(a \cup b) \frown x \leq b \leq a \cup b \cup x$, $a \cap y \leq b \leq a \cup y$ by Lemma 1. Then $b \leq a \cup b \cup x \cup y = a \cup x \cup y$ since $a \cup y \geq b$ as above. $b \geq (a \cup b) \frown x \geq a \cap x$, $b \geq a \cap y$ imply $b \geq (a \cap x) \cup (a \cap y) = a \cap (x \cup y)$. Thus we have $ab(x \cup y)$ by Lemma 1. Similarly we have the dual case.

Lemma 4. Let L_0 be a distributive lattice satisfying the following condition (A):

(A) For any subset B(a, b) in L_0 , if $x, y \in B(a, b)$, then $a \frown x$ and $a \frown y$; $b \frown x$ and $b \frown y$ are comparable respectively.

Then in L_0 x, $y \in B^*(a, b)$ and x, $y \in B^*(a \smile b, b)$ imply $x \smile y \in B^*(a, b)$ and $x \smile y \in B^*(a \smile b, b)$.

Proof. From $x \in B^*(a \smile b, b)$ and $x \in B^*(a, b)$ we have $(a \frown b) \smile (b \frown x)$ < b. Similarly $(a \frown b) \smile (b \frown y) < b$. Put $P = (a \frown b) \smile (b \frown x)$, $Q = (a \frown b) \smile (b \frown x)$ y. Then $(a \smile P) \frown (b \smile P) = (a \smile ((a \frown b) \smile (b \frown x))) \frown (b \smile ((a \frown b) \smile (b \frown x))) = (a \multimap (b \frown x)) \frown (b \frown x) = P$, and $(a \frown P) \smile (b \frown P) = (a \frown ((a \frown b) \smile (b \frown x)))) \smile (b \frown ((a \frown b) \smile (b \frown x))) = (a \frown b) \smile (a \frown b \frown x) \smile (a \frown b) \smile (b \frown x) = P$ by distributive law, that is, $P \in B(a, b)$. Similarly $Q \in B$ (a, b). Hence $b \frown P = P$ and $b \frown Q = Q$ are comparable by the hypothesis. Accordingly we have $(a \frown b) \smile (b \frown (x \smile y)) = (a \frown b) \smile (b \frown x) \smile (a \frown b) \smile (b \frown y) = P \smile Q < b$ since either $P \leq Q < b$ or $Q \leq P < b$, that is, $x \smile y \in B^*(a, b)$. It is easily shown that $x \smile y \in B^*(a \smile b, b)$ from $x, y \in B^*(a \smile b, b)$.

Theorem 2. Let L_0 be a distributive lattice satisfying the condition (A), then L_0 is a topological lattice in its B^{*}-topology.

Proof. We shall prove the continuity of the join operation x - y. By Lemmas 2, 3 and 4 we have $x - y \in B^*(a, b)$ if and only if one of the following conditions occurs:

(1) $x \in B^*(a, b)$ and $y \in B^*(a, b)$;

(2) $x \in B^*(a \smile b, b);$

 $(3) \quad y \in B^*(a \smile b, b).$

Hence we can prove the continuity of $x \sim y$. Similarly we can prove the continuity of $x \sim y$.

3. Definition. When $B^*(a, b)=b$ for some a in a lattice, we shall say that b is extreme for a, and denote this fact by (a, b)E. (a, b) is called an extreme pair when $B^*(a, b)=b$ and $B^*(b, a)=a$; in this case we shall write $(a, b)E_s$.

Lemma 5. If a and a' are complemented, then $(a, a')E_s$.

Proof. If aa'x, then $a'=(a \frown a') \smile (a' \frown x) = a' \frown x$, $a'=(a \smile a') \frown (a' \smile x) = a' \smile x$ from $a \frown a' = 0$, $a \smile a' = I$, and hence a'=x. Similarly if a'ax, then a=x.

Lemma 6. If $(a, b)E_s$, then a does not belong to any B(a', b) such that $a \neq a'$ and a', b are non-comparable.

Proof. If $a \in B(a', b)$, then a'ab, that is, $a' \in B^*(b, a)$, this contradicts $(a, b)E_s$.

If (a, b) is a non-comparable pair which is $(a, b)E_s$, B(a, b) is called a maximal extreme B-cover.

Hereafter let L_0 be a distributive lattice with O, I satisfying the condition (A).

Lemma 7. If L_0 consists of a finite number of maximal extreme B-covers and a chain, then L_0 is uniquely expressed as follows:

(B) $L = \sum_{i=1}^{n} B(a_i, b_i) + C^{*}$, where $B(a_i, b_i)$ are maximal extreme B-covers such that a_i, b_i are non-comparable, and C is a chain.

Proof. It is proved from Lemmas 1, 5 and 6 and the condition (A).

Lemma 8. If $B(a, b) \ni x$ in a distributive lattice L_0 , then $B(a, b) = B(a, b \frown x) \smile B(b, a \smile x)$.

Proof. If we take $y \in B(a, b \frown x) \smile B(b, a \smile x)$, then $a \frown b \le y \le a \smile b$, hence $y \in B(a, b)$. Conversely if we take $y \in B(a, b)$ then $b \frown y \ge b \frown x$ implies $a \smile y \ge a \smile x$, since $a \smile (b \frown y) \ge a \smile (b \frown x)$, and $a \smile (b \frown y) = (a \smile b)$ $\frown (a \smile y) = a \smile y$ and $a \smile (b \frown x) = a \smile x$. Similarly $a \smile x \ge a \smile y$ implies $b \frown x \ge b \frown y$. Accordingly we have either $b \frown y \ge b \frown x$ or $a \smile x \ge a \smile y$ since $b \frown x$ and $b \frown y$ are comparable in L_0 . In the first case we have $a \smile b \ge y \ge b \frown x$, that is, $y \in B(b, a \smile x)$, and in the second case we have $a \smile x \ge y \ge a \frown b$, that is, $y \in B(a, b \frown x)$.

Lemma 9. If $L_0 = B(a_0, b_0)$, where a_0, b_0 are non-comparable extreme pair, then L_0 is a Hausdorff space in its interval topology.

Proof. Let a, b be distinct elements of L_0 . From [4] we can prove that there is a covering of L_0 by means of a finite number of closed intervals such that no interval contains both a and b.

223

No. 5]

^{*)} Σ , + denote the set-theoretical unions.

Y. MATSUSHIMA

(a) The case where a, b are non-comparable

Since L_0 is distributive and $a, b \in L_0 = B(a_0, b_0)$, we have either a_0ab or a_0ba by (A). We shall consider first the case a_0ab . Then abb_0 by [1, Lemma 3]. In this case L_0 is represented in the following form by Lemma 8.

 $L_0 = B(a_0, a) \cup B(b, b_0) \cup [a] \cup [b] \cup (a] \cup (b] \cup B(a, b).$ (1) In (1), if $B(a, b) = \{a, b, a \frown b, a \cup b\}$, then we have $B(a, b) = [a, a \cup b]$ $\cup [a \frown b, b]$, and if B(a, b) contains x which is distinct from $a, b, a \frown b$ and $a \cup b$, then we have $B(a, b) = B(a, b \frown x) \cup B(b, a \cup x)$ by Lemma 8. Thus we have a covering of L_0 which has a desired form. In case a_0ba we can proceed similarly.

Consequently we have a covering of L_0 by means of a finite number of closed intervals such that no interval contains both a and b.

(b) The case where a, b are comparable

Suppose that a > b. If there is no x such that a > x > b, then one of the following coverings of L_0 is desired form by [2, §4 (3)].

$$L_{0} = B(a, b_{0}) \cup B(a_{0}, b) \cup [a] \cup [b],$$

$$L_{0} = B(a, a_{0}) \cup B(b, b_{0}) \cup [a] \cup [b].$$
(2)

If there is x such that a > x > b, then put

 $L_0 = B(x, a_0) \smile B(x, b_0) \smile [x) \smile (x]. \tag{3}$

In (3), if $B(x, a_0)$ contains both a and b, then we shall divide it into parts as follows. If there is no y such that a>y>x, then let $B(a_0, x)=B(a, a_0) \cup B(b, a_0) \cup [b, x]$. In case there is y such that a>y>x, then let $B(a_0, x)=B(y, a_0) \cup (y]$, then we shall have the desired intervals.

If $B(x, b_0)$ contains both a and b in (3), we shall be able to divide it into the desired intervals similarly.

Theorem 3. If L_0 is a distributive lattice with O, I and if it satisfies the conditions (A) and (B), then L_0 is a Hausdorff space in its interval topology.

Proof. The theorem follows immediately from Lemmas 7 and 9.

4. Now we shall introduce a multiplication in a distributive lattice. Definition. We shall define $xy = (a \smile x) \frown (b \smile y)$ for fixed two elements a, b of L.

Lemma 10. x(yz)=(xy)z in L.

Proof. $x(yz) = (a \smile x) \frown (b \smile ((a \smile y) \frown (b \smile z))) = (a \smile x) \frown (a \smile b \smile y) \frown (b \smile z), (xy)z = (a \smile ((a \smile x) \frown (b \smile y))) \frown (b \smile z) = (a \smile x) \frown (a \smile b \smile y) \frown (b \smile z).$ Lemma 11. If $x \in B(a, b)$ and $y \in L$, then we have

 $(1) \quad xx = x,$

(2) $xy \in B(a, b), yx \in B(a, b).$

Proof. Since (1) is immediate from the definition, we shall prove (2).

$$(a \smile xy) \frown (b \smile xy) = (a \smile ((a \smile x) \frown (b \smile y))) \frown (b \smile ((a \smile x) \frown (b \smile y))) = (a \smile x)$$

 $(a \cup b \cup y) \cap (a \cup b \cup x) \cap (b \cup y) = (a \cup x) \cap (b \cup y) = xy$; similarly $(a \cap xy) \cup (b \cap xy) = xy$. Thus L is a semigroup with the kernel B(a, b).

Theorem 4. Let L_0 be a distributive lattice with O, I such that $L_0 = B(a_0, b_0)$ satisfies the condition (A), where a_0, b_0 are non-comparable extreme pair. Then the multiplication xy = (a - x) - (b - y) is continuous in its interval topology, that is, L_0 is a mob which has the desired kernel B(a, b).

Proof. Suppose that $xy = (a \smile x) \frown (b \smile y)$ belongs to some *B*-cover B(c, d). Since $a, b, c, d \in B(a_0, b_0)$ we shall prove the continuity for xy in case a_0ab , acb, adb, and acd. Then a_0ab , adb imply a_0ad by [1, Lemma 4] and a_0ad , acd imply a_0cd by [1, Lemma 8]. Hence cdb_0 by [1, Lemma 3]. By [1, Lemma 2] we have $a_0 \smile d \ge a_0 \smile c, b_0 \smile c \ge b_0 \smile d$ and $a_0 \frown c \ge a_0 \frown d$ and $b_0 \frown d \ge b_0 \frown c$.

From $a_0 \smile (b_0 \frown c) = a_0 \smile c$, $a_0 \smile (b_0 \frown d) = a_0 \smile d$, $(a_0 \smile d) \frown (b_0 \smile c) = c \smile d$, $(a_0 \smile c) \frown (b_0 \smile d) = c \frown d$ and [2, § 4 (3)], if $x \in B(b_0 \frown c, a_0 \smile d)$, then we have either $a_0 \smile x > a_0 \smile d$ or $a_0 \smile x < a_0 \smile c$.

If $a_0 \smile x > a_0 \smile d$, then we have $a \smile x > a \smile d$ and $(a_0 \smile x) \frown b_0 > b_0 \frown d$ by [2, §4 (3)], hence $xy \in B(a_0, b_0) - (a_0 \smile d]$ since $a \smile x$, $b \in B(a_0, b_0) - (a_0 \smile d]$, and if $a_0 \smile x < a_0 \smile c$, then we have $xy \in B(c, d)$ similarly. $y \in B(a_0 \frown d, b_0 \smile c)$ implies $xy \in B(c, d)$ in the same way. Hence $x \in B(b_0 \frown c, a_0 \smile d)$ or $y \in B(a_0 \frown d, b_0 \smile c)$ implies $xy \in B(c, d)$.

Conversely if $x \in B(b_0 \frown c, a_0 \smile d)$ and $y \in B(a_0 \frown d, b_0 \smile c)$, then $xy \in B(c, d)$, that is, $xy \in B(c, d)$ implies $x \in B(b_0 \frown c, a_0 \smile d)$ or $y \in B(a_0 \frown d, b_0 \smile c)$. This completes the proof.

Corollary. Let L_0 be a distributive lattice with O, I satisfying the conditions (A) and (B); then L_0 is a mob.

References

- Y. Matsushima: On the B-covers in lattices, Proc. Japan Acad., 32, 549-553 (1956).
- Y. Matsushima: The geometry of lattices by B-covers, Proc. Japan Acad., 33, 328-332 (1957).
- [3] G. Birkhoff: Lattice Theory, rev. ed., New York (1948).
- [4] E. H. Northam: The interval topology of a lattice, Proc. Amer. Math. Soc., 4, 824-827 (1953).
- [5] E. S. Wolk: Order-compatible topology on a partially ordered set, Proc. Amer. Math. Soc., 9, 524-529 (1958).