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1. Recently, K. Nagami has proved the following theorem 4"
Let X and Y be metric spaces and f a closed continuous mapping

of X onto Y. If f-(y) consists of exactly k(< oo) points for every
point y e Y and dim X0, then we have dim Y0.

In the present note, as an extension of this theorem, we shall
prove the following theorem:

Theorem. Let f be a closed continuous mapping of a metric
space X onto a topological space Y such that for each point y of
Y the inverse image f-(y) consists of exactly k(< oo) points, then
we have

dim X- dim Y.
To prove the theorem, we use some lemmas:
Lemma 1 (K. Morita 2). In order that a T-space X be

metrizable it is necessary and sucient that there exist a countable
collection {} of locally finite closed covering of X satisfying the
condition:

For any neighborhood U of any point x of X there exists some
j such that S(x,) U.

Lemma 2 (K. Morita and S. Hanai [3, A. H. Stone [5). Let
f be a closed continuous mapping of a metric space Xonto a topological
space Y. In order that Y be metrizable it is necessary and sucient
that the boundary f-(y) of the inverse image f-(y) be compact for
every point y of Y.

2. Proof of the theorem. Let us put f-(y)- {x(y)i i- 1, 2,..., k}
for every point y of Y. By Lemma 1 there exist a countable number
{} of locally finite closed coverings of X such that for some integers

3" and some indices aeg we have
F,., x(y), i--1, 2,..., k

and
F,.,Fz.t--, i, j--1, 2,..., k, i-l,

where we put = {F.]a e/2.}, j-- 1, 2,...

Let us put f(F)--W. As f is a closed mapping, W is a

closed subset of Y and contains y. If we denote by f the partial
mapping f whose domain is Ff-(W), and whose range is W,
then f is a homeomorphism from Ff-(W) onto W. Hence
we have
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dim W dim (F,f-(W)).
We put -[W[y Y], then . is a closed eovering of Y. By the assump-

tion of the theorem and the property of {j], f(;)-- {f(;)[a e 9} is

a loeally finite closed eovering of Y.
Let us denote the totality of all the sets which consist of k

distinct positive integers by F, F,... If we put 3-- Af(;), then

3 is a locally finite closed covering of Y and-(3).

As3 is a locally finite closed system and by Lemma 2 Y is a

metrizable space, we have
dim Y dim Wdim X.

Wy3p
Here, we put Y-- W. As Y is, of course, a closed subset of

Wyep
Y, we have

dim Y=dim Y dim X.

Next, we shall show dim Xdim Y. By the construction we

have dim f-(W) dim W. For each integer p, f-()
={f-(W)We} is a locally finite closed system of X. Hence
X-- f-(W) is a closed subset of X and dim Xdim L Con-
Wyp

sequently, we have dim X=dimXdim Y. q.e.d.
p=l

Corolhr. Let f be a closed continuous mapping of a metric
space X onto a topological space Y such that for every point y of
Y the inverse image f-(y) is finite, then for any finite m, we have

dim{y] ]f-(y)i-m)dim X.
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