44. Notes on Uniform Convergence of Trigonometrical Series. I

By Kenji Yano
Mathematical Department, Nara Women's University, Nara (Comm. by Z. Suetuna, m.J.A., May 7, 1959)

1. In the preceding paper [1] we have studied the uniform convergence of the series

$$
\sum_{n=1}^{\infty} \frac{s_{n}}{n} \sin n t
$$

concerning the Riemann summability $\left(R_{1}\right)$. In this paper we shall treat the cosine-analogue.

Let $\left\{s_{n} ; n=1,2, \cdots\right\}$ be a sequence with real terms, and let

$$
s_{n}^{r}=\sum_{\nu=0}^{n} A_{n-\nu}^{r-1} s_{\nu} \quad(-\infty<\gamma<\infty)
$$

where $s_{0}=0$ and $A_{n}^{r}=\binom{\gamma+n}{n}$. The theorem to be proved is as follows:
Theorem 1. Suppose that $0<r, 0<s<1$ (or $s=1,2, \cdots$), and $0<\alpha \leqq 1$, and that

$$
\begin{gather*}
\sum_{\nu=1}^{n}\left|s_{\nu}^{r}\right|=o\left(n^{1+r \alpha}\right), \tag{1.1}\\
\sum_{\nu=n}^{2 n}\left(\left|s_{\nu}^{-s}\right|-s_{\nu}^{-s}\right)=O\left(n^{1-s \alpha}\right), \tag{1.2}
\end{gather*}
$$

as $n \rightarrow \infty$. Then, (I) when $0<\alpha<1$ the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{s_{n}}{n} \cos n t \tag{1.3}
\end{equation*}
$$

converges uniformly (on the real axis), and (II) when $\alpha=1$ the series (1.3) converges uniformly if and only if $\sum n^{-1} s_{n}$ converges.

Corollary 1. If

$$
\sum_{\nu=n}^{2 n}\left(\left|s_{\nu}^{-1}\right|-s_{\nu}^{-1}\right)=O(1) \quad(n \rightarrow \infty)
$$

where $s_{n}^{-1}=s_{n}-s_{n-1}$, and if the series in

$$
\begin{equation*}
g(t)=\sum_{n=1}^{\infty} s_{n} \sin n t \tag{1.4}
\end{equation*}
$$

converges boundedly in the interval (δ, π) for any $\delta>0$, then a necessary and sufficient condition for the convergence of the Caucy integral

$$
\begin{equation*}
\int_{\rightarrow 0}^{\pi} g(t) d t \tag{1.5}
\end{equation*}
$$

is the convergence of the series $\sum n^{-1} s_{n}$.
This is a theorem of Izumi [2,3].
This corollary follows from Theorem 1 with $r=s=\alpha=1$, since the convergence of the series in (1.4) implies $s_{n}=o(1)$, cf. Zygmund [4,
p. 268], and of course $s_{n}^{1}=o(n)$, and the convergence of (1.5) is equivalent to the existence of

$$
\lim _{t \rightarrow+0} \sum_{n=1}^{\infty} \frac{s_{n}}{n} \cos n t
$$

by Lemma 1 below.
2. In order to prove Theorem 1 we need some lemmas.

Lemma 1. Suppose that $0<r, 0<s$ and $0<\alpha \leqq 1$. Then the two conditions (1.1) and (1.2) imply the convergence of the series (1.3) in (δ, π) for any $\delta>0$, and in particular the convergence of

$$
\begin{equation*}
\sum_{n=1}^{\infty}(-1)^{n} \frac{s_{n}}{n} . \tag{2.1}
\end{equation*}
$$

Lemma 1.1. If $\sum c_{n}(1-\cos n x)$ is convergent for all x of an interval (α, β), then $\sum c_{n}$ is convergent.

This is Theorem 258 in Hardy [5, p. 366].
Proof of Lemma 1. Observe that by Abel's transformation

$$
\begin{aligned}
\sum_{\nu=1}^{n} s_{\nu} e^{i \nu u}= & \left(1-e^{i u}\right)^{-s} \sum_{\mu=1}^{n} s_{\mu}^{-s} e^{i \mu u} \\
& -\left(1-e^{i u}\right)^{-[s]} \sum_{\mu=1}^{n} s_{\mu}^{-s} \sum_{\nu=n+1}^{\infty} A_{\nu-\mu}^{s-[s]-1} e^{i \nu u} \\
& -\sum_{j=1}^{[s]} s_{n}^{1-j}\left(1-e^{i u}\right)^{-j} e^{i(n+1) u},
\end{aligned}
$$

where the second term vanishes when s is integral, and the third term does when $0<s<1$. Using this identity and repeating the argument in Yano [1], we see that under the assumption in the lemma

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} s_{\nu} \int_{t}^{\pi} e^{i \nu u} d u \tag{2.2}
\end{equation*}
$$

converges in the interval $\delta \leqq t \leqq \pi$ for every δ such as $0<\delta<\pi$. Here we do not reproduce the argument. The convergence of (2.2) in (δ, π) implies that of the series

$$
\begin{aligned}
\sum_{\nu=1}^{\infty} s_{\nu} \int_{t}^{\pi} \sin \nu u d u & =-\sum_{\nu=1}^{\infty}(-1)^{\nu} \frac{s_{\nu}}{\nu}[1-\cos \nu(t+\pi)] \\
& =-\sum_{\nu=1}^{\infty}(-1)^{\nu} \frac{s_{\nu}}{\nu}(1-\cos \nu x), x=t+\pi
\end{aligned}
$$

in $\delta+\pi \leqq x \leqq 2 \pi$. From this follows the convergence of the series (2.1) by Lemma 1.1, and we get the desired result.

Lemma 2. Suppose that $0<r, 0<s$ and $0<\alpha<1$, then the two conditions (1.1) and (1.2) imply the convergence of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{s_{n}}{n} . \tag{2.3}
\end{equation*}
$$

In the case $\alpha=1$, this lemma is not true. This is easily seen by taking the sequence $s_{0}=s_{1}=0$ and $s_{n}=1 / \log n$ for $n \geqq 2$.

Lemma 2.1. Suppose that $0<r, 0<s$ and $0<\alpha \leqq 1$. Then the two conditions (1.1) and (1.2) imply

$$
\begin{equation*}
s_{n}^{1+\mu}=o\left(n^{1+\mu \alpha}\right) \quad-s<\mu \leqq r \tag{2.4}
\end{equation*}
$$

Concerning this lemma, cf. Lemma 2 in Yano [1].
Proof of Lemma 2. If $r \geqq 1$ we have $s_{n}^{2}=o\left(n^{1+\alpha}\right)$ from (2.4) with $\mu=1$. And if $r<1$ (2.4) with $\mu=r$ yields $s_{n}^{1+r}=o\left(n^{1+r \alpha}\right)$, and then

$$
s_{n}^{2}=s_{n}^{1+r+(1-r)}=o\left(n^{1+r \alpha+(1-r)}\right) .
$$

Hence, in both cases we get for some δ such as $0<\delta<1$,
(2.5) $\quad s_{n}^{2}=o\left(n^{1+\grave{\delta}}\right)$.

From (2.5) and $s_{n}^{1}=o(n)$ which is (2.2) with $\mu=0$, it follows

$$
\begin{aligned}
\sum_{\nu=n+1}^{n+m} \frac{s_{\nu}}{\nu}=2 \sum_{\nu=n+1}^{n+m} & \frac{s_{\nu}^{2}}{\nu(\nu+1)(\nu+2)}+\frac{s_{n+m}^{2}}{(n+m+1)(n+m+2)} \\
& -\frac{s_{n}^{2}}{(n+1)(n+2)}+\frac{s_{n+m}^{1}}{n+m+1}-\frac{s_{n}^{1}}{n+1}=o(1)
\end{aligned}
$$

as $n \rightarrow \infty$ for $m=1,2, \cdots$. This proves the convergence of the series (2.3), and we get the lemma.

Proof of Theorem 1. The proof runs analogously as Theorem 1 in Yano [1], whose proof is essentially based on the estimation of the two expressions

$$
\sum_{\nu=1}^{n} s_{\nu} \int_{0}^{t} e^{i \nu u} d u \quad \text { and } \quad \sum_{\nu=n+1}^{\infty} s_{\nu} \int_{t}^{\pi} e^{i \nu u} d u .
$$

Now, if the series (1.3), i.e.,

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \cos \nu t \tag{2.6}
\end{equation*}
$$

converges uniformly (on the real axis), then the series $\sum \nu^{-1} s_{\nu}$ necessarily converges.

Inversely, if $\sum \nu^{-1} s_{\nu}$ converges the uniform convergence of (2.6) is equivalent to that of the series in

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu}(1-\cos \nu t)=\sum_{\nu=1}^{n}+\sum_{\nu=n+1}^{\infty}=S_{n}+R_{n} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{gathered}
S_{n}=Y\left(\sum_{\nu=1}^{n} s_{\nu} \int_{0}^{t} e^{i \nu u} d u\right), \\
R_{n}=\Im\left(-\sum_{\nu \equiv n+1}^{\infty} s_{\nu} \int_{t}^{\pi} e^{i \nu u} d u\right)+\sum_{n+1}^{\infty}(-1)^{\nu} \frac{s_{\nu}}{\nu}-\sum_{n+1}^{\infty} \frac{s_{\nu}}{\nu} .
\end{gathered}
$$

And, under the conditions in the theorem, the series $\sum(-1)^{\nu} \nu^{-1} s_{\nu}$ converges by Lemma 1 , and $\sum \nu^{-1} s_{\nu}$ does by the above assumption. Hence, the uniform convergence of the series in (2.7) is certainly verified by the argument used in loc. cit. [1].

Combining the above result with Lemma 2 we get the theorem.
3. In the case $r=0$ Theorem 1 is not true, and we can then prove the following theorem quite similarly. Cf. also Theorem 3 in Yano [1].

Theorem 2. If

$$
\sum_{\nu=n}^{2 n}\left|s_{\nu}\right|=o(n / \log n) \quad(n \rightarrow \infty)
$$

and if for some positive s and δ

$$
\sum_{\nu=n}^{2 n}\left(\left|s_{\nu}^{-s}\right|-s_{\nu}^{-s}\right)=O\left(n^{1-\delta}\right) \quad(n \rightarrow \infty)
$$

then the series $\sum n^{-1} s_{n} \cos n t$ converges uniformly if and only if $\sum n^{-1} s_{n}$ converges.

Letting $s=1$ and $n^{-1} s_{n}=a_{n}$ in Theorem 3 in Yano [1] and the above Theorem 2, and after some modification we have the following

Corollary 2. Suppose that

$$
\sum_{\nu=n}^{2 n}\left|a_{\nu}\right|=o(1 / \log n)
$$

and that for some positive δ

$$
\sum_{\nu=n}^{2 n}\left(\left|\Delta a_{\nu}\right|-\Delta a_{\nu}\right)=O\left(n^{-\delta}\right),
$$

where $\Delta a_{n}=a_{n}-a_{n+1}$. Then, (I) the sine series $\sum a_{n} \sin n t$ converges uniformly, and (II) the cosine series $\sum a_{n} \cos n t$ converges uniformly if and only if $\sum a_{n}$ converges.

References

[1] K. Yano: Notes on Tauberian theorems for Riemann summability, Tôhoku Math. J. (2), 10, 19-31 (1958).
[2] S. Izumi: Some trigonometrical series III, Jour. Math., 1, 128-136 (1953).
[3] S. Izumi: Some trigonometrical series XI, Tôhoku Math. J. (2), 6, 73-77 (1954).
[4] A. Zygmund: Trigonometrical Series, Warszawa-Lwow (1935).
[5] G. H. Hardy: Divergent Series, Oxford (1949).

