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1. In this paper we shall consider the problems characterizing
a given space X by a ring of continuous functions defined on
Shirota 1 has proved that if X is a Q-space, then C(X) characterizes
X, that is, the ring isomorphism of C(X) onto C(Y) implies that X
is homeomorphic to Y for any Q-spaces X and Y. In general, it is
easy to see that C(X) or B(X) does not characterize X. But under
some conditions on a ring isomorphism this problem is solved in the
affirmative 2, 6. On the other hand, Shanks 3 and Ishii 4 have
proved that if X is locally compact, then C(X) characterizes X.

In this paper, we shall generalize Shanks’ theorem and it will be
shown that for any locally Q-complete space X which is not compact,
there is a subring of C(X) on which any non-trivial ring homomorphism
is a point ring homomorphism. Moreover we shall prove that such a
subring characterizes X.

2. Extension of functions

Let fC(X) and f be a continuous exgension over fiX of f (if
exists, i.e. f is bounded). If f can be continuously extended over a
poin pX--X, f has a finite value a he point p. If f is not
continuously exended over the point p, then for any m>0, f--(f/x m)
v(--m) has a continuous extension f because f is bounded.

easily seen tha f(p)-m. Therefore there exists a neighborhood (in
X) ) of the point p on which f>n for a given integer n>O. Let

1) A space X considered here is always a completely regular Tl-space, and other
terminologies used here, for instance C(X), are the same as in [7].

2) C(X) is a ring consisting of all continuous functions which have compact
supports.

3) A non-trivial ring homomorphism of a subring C of C(X) means a ring homo-
morphism of CI onto R where R is a ring of all real numbers. But a ring homomorphism
is not necessarily linear, for C does not necessarily contain constant functions. A point
ring homomorphism is defined by (f)=f(p) for all fC where p is a fixed point
in X. In this case is completely determined by the point p, and hence we shall
write =p. A ring homomorphism is called to be trivial if (f)=0 for all feC.

4) For any constant m, where no confusion will arise, we use the same letter m
for a function which takes a constant value m on X. The symbols "v" and "/"

are used in the following sense:
(fvg)(x)=max (f(x), g(x)) and (fAg)(x)=min (f(x), g(x)).

5) A neighborhood (in X) of x* means a set U such that U=XV where V is
a neighborhood of x* in
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C(f)=X{x; xflX--X, f can be continuously extended over [x}}.
From these arguments we have
Lemma 1. Let feC(X) and x*C(f); then there is a neighbor-

hood of x* (in X) on which f>n for any given integer
Lemma 2. Under the same conditions as in Lemma 1, if we

put g--f/max (q, f) for any q>l, then we have (x*)=0.
Proof. Since g is bounded, g has a continuous extension . C(f)

Sx* implies that for any re>q, there is a neighborhood U(in X) on
which f:>m by Lemma 1. Therefore g[U=l/f<l/m. This means
that (x*)-- 0.

Lemma 3. Under the same conditions as in Lemma 1, we have

(fg)(x*)-- 1 for any q 1.
Proof. For any q > 1, the set A {x; If(x) [_> q} is not void because

f is not bounded. By the definition of g, it is obvious that fg=l on
A. Since x* C(f), A contains some neighborhood (in X) of x* on which

fq by Lemma 1. Therefore it is easily verified that (fg)(x*)--l.
3. Subrirg C(X)
In 3 and 4, we assume that X is locally Q-complete but not

compact and B is a compact subset of fiX contained in X-X such
that i) in case X is a Q-space, B is any compact subset, ii) in case X
is not a Q-space, B is any compact subset containing (,X-X)2) In
case ii) B is disjoint from X because X is open in ,X by Theorem 2
in [7. Let us put Y= fiX--B, and C(X) be a set of all functions in
C(X) which have the property such that Z(f) contains a neighborhood
(in fiX) of B where Z(f)={x; f(x)=O, xX}.

Lemma 4. If f, g CB(X), then f-g CB(X).
Proof. Suppose that Z(f) (or Z(g)) contains an open neighbor-

hood U(in fiX) (or V(in fiX)) of B. UV is an open neighborhood
(in fiX) of B and W=X(UV) is a non-void open subset of X,
because X is dense in fiX. By the definition, both f and g vanish on
W. Since (U V) is open and X is dense in fiX, it is obvious that
WU., V, and hence Z(f+g)WUV. This means that f+g

If Cz(X)f, then for any g e C(X), it is easily verified that
fgC(X). Thus C(X) is an ideal of C(X). On the other hand,
C(Y) is considered as a subring contained in C(X), since X is dense
in Y and Y is locally compact.

Theorem 1. Let X be locally Q-complete but not compact. If B
is a compact subset of fiX contained in flX--X such that i) in case
X is a Q-space B is any compact subset, ii) in case X is not a Q-space
B is any compact subset containing (,X--X), then any non-trivial

6) As denotes a closure (in BX) of A where A is any subset.
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ring homomorphism of C,(X) is a point ring homomorphism.

Proof. If X is pseudo-compact, then we have X--X-flX--X,
that is, C(X)-C(X), and hence we can assume that X is not pseudo-
compact. Let be a non-trivial ring homomorphism of C=C(X);
then can be regarded as a non-trivial ring homomorphism of C(Y)
where Y--flX--B. For if --0 on C(Y), then for any fC there
exists a g eC(Y) such that g=l on {x; f(x)=O}. Therefore we have
q(f)--(fg)--(f)(g)--(f).O--O. This means that -0 on C. There-
fore, by Theorem 5 (Ishii _4) becomes a point ring homomorphism of
C(Y), that is, there is a point x* in Y such that .--, i.e. q(f)--f(x*)
for all feC(Y). Let f be any function in C. Since g-f/max (1, f)
is bounded and g-0 on Z(f), we can consider g as a function of C(Y).
Similarly fg is also regarded as a function of C(Y). From the re-
mark above and the fact that is a ring homomorphism, we have (fg)
-=(fg)(x*) and (fg)-(f)(g)--(f)(x*). Now suppose that x* Y--X
and C(f)$x*. By Lemmas 2 and 3 we have (fg)(x*)-I and Y(x*)-0.
This is a contradiction. Thus either X contains x* or C(f) x*. In case
X contains x*, then is a point ring homomorphism, because for any
gC-C(Y), we take a function k in C(Y) such that k(x*)-I and
k(x)-O for x{y; g(x*)--l<g(y)<g(x*)-l}UXwhere U is a neigh-
borhood of x* which is disjoint from a neighborhood(in fiX) of B.
Then kgeC,(X) and ,(kg)-(kg)(x*)--g(x*). On the other hand, (kg)
-?(k)(g)-k(x*)F(g). This means that g(x*)-F(g). Therefore we
shall consider the remainder case: Y--X contains x* and C(f)x* for
all fC. But in the following we shall prove that this case does not
happen. Since Y-XfiX-B--X,X, we have Y--X) (,X--X)
=t, that is, ,X--Xx*. By (v) in [5J, x* is contained in G-set of
fiX which is disjoint from ,X. Therefore there is a function feB(X)
such that f(x*)=O and f>0 on X. On the other hand, fix is normal,
there is a function h on fiX such that h(B)----1 and h(x*)-l. It is
easy to see that ((hlX) v O)/f is not bounded on X. By the method of
construction of h, ((hlX)vO)/f is a function contained in Cz(X), and
hence we have proved that there is a non-bounded function in C(X)
which can not be continuously extended over the point x*. Thus the
ring homomorphism must be a point ring homomorphism ., x*eX.

Theorem 1 shows that there are no maximal ideals, except fixed
maximal ideals, by which the residue class rings are isomorphic to the
ring of all real numbers.

Next we shall introduce a topology in X which is a set of all fixed
maximal ideals in C(X) as follows:

Cl(A) I(a) I(x) I(a)
.A
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where A--{I(x); xAX}, and I(x) denotes a maximal ideal whose
element vanishes at the point x. Then it is easily seen, using the same
method as in [6_, that the mapping x->I(x) gives a homeomorphism

of X onto X [6.
From Theorem 1 and the definition of topology of X, we have
Theorem 2. Let X be locally Q-complete but not compact and let

B be any compact subset contained in flX--X such that i) in case X
is a Q-space, B is any compact s,ubset, ii) in case X is not a Q-space,
B is any compact subset containing (,X--X); then C(X) determines
X.

Any Q-space is locally compact, and moreover any locally compact
space is always locally Q-complete [7. Thus we have obtained a sub-
ring of C(X) which determines X, for any locally Q-complete space
which is not compact.

4. Subring C(X)
In this section we shall moreover assume that X is not a Q-space.

We denote by C(X) the subring of C(X) whose extension over ,X

vanishes on ,X--X. Then we have
i) Z(f)O for any fC(X). For if Z(f)=t, then 1/feC(X)

but 1/f has not a continuous extension over ,X because f(,X--X)=O.
This is a contradiction.

ii) Z(f) contains B=(,X--X) for any f eC(X). We assume
that, no loss of generality, that f>_0. It is sufficient to prove that
Z(f),X--X. If there is a point b e,X--X--Z(f), there is a
function g in C(,X) such that g(b)=0, g(Z(f),X).----1, and f is
positive on some neighborhood of b. Then f+g is positive on X and
f+g has an extension over ,X and (f+g)(b)=O. On the other hand,
1/(f+g)eC(X) and it has a continuous extension over ,X. This is a
contradiction.

iii) If C(X)=C(X), then X--X is compact. Suppose that there
is a point b in B--(,X--X). Since ,X is a Q-space, there is a con-
tinuous function on fiX such that f(b)=0 and f is positive on X be-
cause b is contained in a G-set of fiX which is disjoint from ,X [5.
On the other hand, since fix is compact, there is a continuous function
g such that g(B)=0 and g is not identically zero on X. Then f+g
eC(X) but Z(f+g) contains no neighborhoods of B by the method
of construction of f. Therefore ,X--X coincides with B and hence it
is compact.

The converse of iii) does not hold. Such an example is given by
the following space X.

Example. X= [1, 9 [1, o --(/2, ) where o and 9 are the first
ordinals of the second and the third classes respectively. Then X is
pseudo-compact and locally compact moreover flX=X{(9,)}. Thus
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C(X)=C(X) and C(X) contains a continuous function g defined by
g(a, n)=l/n and g(a, o)=0 where l_<a_<9. It is obvious that C(X)
does not contain g, and hence C(X)C(X) even if ,X-X consists
of only one point (f2, o) (and hence compact).

We notice that the point p=(2, o) is not a P-point ) of fiX and
in this case, fiX is considered as a natural one-point Q-completion of X.

Let X be the natural one-point Q-completion of X and p be an
adjointed point, i.e. X X{p} (see [7]).

Theorem 3. Suppose that X is locally Q-complete but not a Q-
space. Then C(X)=Cz(X) if and only if an adjointed point p of
the natural one-point Q-completion X of X is a P-point ofX where
B=(X--X).

Proof. C(X) ean be regarded as a subset of C(X)consisting of
all elements of C(X) whieh vanish at the point p. Therefore it is
easily verified that if C(X)=C(X), then p is a P-point of X. Con-
versely, if p is a P-point of X, then for each fC(X), Z(f)(in XB)
contains a neighborhood of B in XB. Since Z(f)=Z(f) for some
m >0, it is easy to see that Z(f) contains a neighborhood (in fiX) of
B, and hence we have that C(X)=C(X).

From Theorem 3 and ii) we have
Corollary. If p is a P-point of X, uX-X is compact.
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