73. On the Unique Factorization Theorem in Regular Local Rings

By Masao Narita
International Christian University, Mitaka, Tokyo
(Comm. by Z. Suetuna, m.J.A., July 13, 1959)

Recently Auslander and Buchsbaum [3] have proved that every regular local ring is a unique factorization ring. This proof depends upon the following result of Nagata [1]: If every regular local ring of dimension 3 is a unique factorization ring, then so is every regular local ring of any dimension (see [1, pp. 411-413]).

This theorem was proved independently by Zariski [2].
Nagata proved this theorem by using homological method and ideas. The purpose of this paper is to prove anew this theorem by a purely ideal-theoretic method in a simpler way than in [1] and [2].

Let \mathfrak{D} be an n dimensional regular local ring.
Let $\mathfrak{m}=\Im u_{1}+\Im u_{2}+\cdots+\mathfrak{D} u_{n}$ be the maximal ideal of $\mathfrak{\Im}$, and $\mathfrak{D}^{\prime}=\mathfrak{D}\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ be the polynomial ring over \mathfrak{D}. Then \mathfrak{m}^{\prime} $=\mathfrak{m}\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ is a prime ideal of \mathfrak{S}^{\prime}. Let \mathfrak{D}^{*} be the quotient ring of \mathfrak{D}^{\prime} with respect to \mathfrak{m}^{\prime}, then \mathfrak{D}^{*} will be n dimensional regular local ring, and $\mathfrak{m}^{*}=\mathfrak{D}^{*} u_{1}+\mathfrak{D}^{*} u_{2}+\cdots+\mathfrak{D}^{*} u_{n}$ will be the maximal ideal of \mathfrak{D}^{*}. In the following, we shall use $\mathfrak{a}, \mathfrak{b}, \mathfrak{p}, \mathfrak{q}$, etc. to denote ideals in \mathfrak{D}, and $\mathfrak{a}^{*}, \mathfrak{b}^{*}, \mathfrak{p}^{*}, \mathfrak{q}^{*}$, etc. to denote ideals in \mathfrak{D}^{*}.

We note the following well-known lemma without proof (see, for example, [4]).

Lemma 1. We have
(i) $\mathfrak{D} \mathfrak{D}^{*} \mathfrak{a}=\mathfrak{a}$.
(ii) If \mathfrak{p} is a prime ideal in \mathfrak{S}, then so is $\mathfrak{D}^{*} \mathfrak{p}$ in \mathfrak{D}^{*}, and if \mathfrak{q} is \mathfrak{p}-primary, then $\mathfrak{D}^{*} \mathfrak{q}$ is $\mathfrak{D}^{*} \mathfrak{p}$-primary. Moreover rank $\mathfrak{p}=\operatorname{rank} \mathfrak{D}^{*} \mathfrak{p}$.
A less familiar lemma is:
Lemma 2. Let $v^{*}=u_{1} X_{1}+u_{2} X_{2}+\cdots+u_{n} X_{n}$, then v^{*} is an element of a minimal base of \mathfrak{m}^{*}. Moreover, $\mathfrak{D}^{*} \mathfrak{a} \ni v^{*}$ holds if and only if $\mathfrak{a}=\mathfrak{m}$.

Proof. From $\mathfrak{m}^{*}=\mathfrak{D} u_{1}+\mathfrak{D} u_{2}+\cdots+\mathfrak{D}^{*} u_{n}$ follows the equation $\mathfrak{m}^{*}=\mathfrak{D}^{*} v^{*}+\mathfrak{D}^{*} u_{2}+\cdots+\mathfrak{D}^{*} u_{n}$. Therefore v^{*} is an element of a minimal base of \mathfrak{m}^{*}.

Since every element of $\mathfrak{D}^{*} \mathfrak{a}$ can be expressed in the form $P(x) / Q(x)$, $P(x) \in \mathfrak{a}\left[X_{1}, X_{2}, \cdots, X_{n}\right], Q(x) \notin \mathfrak{m}\left[X_{1}, X_{2}, \cdots, X_{n}\right], \mathfrak{D}^{*} \mathfrak{a} \ni v^{*}$ implies that $\mathfrak{a}\left[X_{1}, X_{2}, \cdots, X_{n}\right] \ni v^{*}$, this means $\mathfrak{a} \not u_{1}, u_{2}, \cdots, u_{n}$, and thereby completes the proof.

Now, let φ be a natural homomorphism of \mathfrak{D}^{*} onto the regular local ring $\overline{\mathfrak{D}}=\mathfrak{D} * / \mathfrak{D}^{*} v^{*}$ of dimension $n-1$.

Lemma 3. Let \mathfrak{D} be a regular local ring of dimension $n \geqq 3$, and let \mathfrak{a} and \mathfrak{b} be ideals of \mathfrak{D} with a condition rank $\mathfrak{a}=\operatorname{rank} \mathfrak{b}=1$. Then, there exists a minimal prime ideal in \mathfrak{D} belonging to \mathfrak{a} and \mathfrak{b}, if and only if there exists a minimal prime ideal in $\bar{\triangle}$ belonging to $\varphi(\mathfrak{D} \mathfrak{a})$ and $\varphi(\mathfrak{D}$) $)$.

Proof. Necessity is evident. Suppose that there exists a minimal prime ideal \bar{p} which belongs to $\varphi\left(\mathfrak{D}^{*} \mathfrak{a}\right)$ and $\varphi(\mathfrak{D} * \mathfrak{b})$. From the assumption rank $\overline{\mathfrak{p}}=1$ follows rank $\varphi^{-1}(\bar{p})=2$. And we have $\varphi^{-1}(\bar{p}) \supset \mathfrak{D}^{*}$ a, \mathfrak{D} ©. On the other hand, we have $\varphi^{-1}(\mathfrak{p}) \ni v^{*}$, this implies that rank $\mathfrak{D}_{\frown} \varphi^{-1}(\mathfrak{p})=1$, from Lemma 2. This means that there exists a minimal prime ideal in \mathfrak{D} which belongs to \mathfrak{a} and \mathfrak{b}.

Theorem. If every regular local ring of dimension 3 is a unique factorization ring, then so is every regular local ring of any dimension.

Proof. If $\operatorname{dim} \mathfrak{D}=1$ or 2 , it is easy to prove that \mathfrak{D} is a unique factorization ring (see, for example, [1, Th. 4, p. 410]).

Therefore, for the purpose of the proof, we may assume that $\operatorname{dim} פ>3$, and may assume that every regular local ring of dimension less than $\operatorname{dim} \mathfrak{D}$ is a unique factorization ring. Let \mathfrak{p} be a prime ideal of rank 1 in \mathfrak{D}. Since $\mathfrak{p c} \subset \mathfrak{p}^{(2)}+\mathfrak{p} \cdot \mathfrak{m}$ (where $\mathfrak{p}^{(2)}$ is the " symbolic square" of \mathfrak{p}, i.e. the \mathfrak{p}-primary component of \mathfrak{p}^{2}), there exists an element p_{1} of \mathfrak{p} such that $p_{1} \notin \mathfrak{p}^{(2)}$ and $p_{1} \notin \mathfrak{p} \cdot \mathfrak{m}$. Assume that $\mathfrak{p} \neq \mathfrak{D} p_{1}$. We shall show that this implies a contradiction. It is well known that this completes the proof (see, for example, [1, Lemma 1, p. 408]).

Since $p_{1} \notin \mathfrak{p}^{(2)}$, we have $\mathfrak{D} p_{1}=\mathfrak{p} \frown \mathfrak{a}$, where \mathfrak{a} is unmixed, of rank 1 and not contained in \mathfrak{p}. Since $\mathfrak{a}: \mathfrak{p}=\mathfrak{a}$, there exists an element p_{2} of \mathfrak{p} such that $\mathfrak{a}: \Im p_{2}=\mathfrak{a}$. By assumption, $\overline{\mathfrak{D}}\left(=\varphi\left(\mathfrak{D}^{*}\right)\right)$ is a unique factorization ring, consequently we have $\varphi\left(p_{1}\right)=\bar{g} \bar{a}$, where \bar{g} and \bar{a} are such elements of $\overline{\mathfrak{D}}$ that $\mathfrak{D}^{*} \mathfrak{p} \subset \varphi^{-1}(\overline{\mathfrak{D}} \bar{g}), \mathfrak{D}^{*} \mathfrak{C} \subset \varphi^{-1}(\overline{\mathfrak{D}} \bar{\alpha})$. By Lemma $3, \bar{g}$ and \bar{a} have no common prime element. Suppose that $\mathfrak{b}=\mathfrak{S} p_{1}+\mathfrak{D} p_{2}$, and we shall prove that \mathfrak{b} has no m-primary component. From $\varphi(\mathfrak{D} * \mathfrak{b})$
 $=\bar{Ð} \bar{a}$ and $\bar{Ð} \bar{g} \ni \varphi\left(p_{2}\right)$. By Lemma 3, \bar{a} and $\varphi\left(p_{2}\right)$ have no common prime element, therefore $\bar{\searrow} \bar{a}+\bar{\searrow} \varphi\left(p_{2}\right)$ is unmixed and of rank 2 ($<\operatorname{dim} \bar{\triangle}$). Since ranks of components of $\varphi\left(\mathfrak{D}^{*} \mathfrak{b}\right)$ are not greater than 2 , ranks of components of $\mathfrak{D} \cdot \mathfrak{b}+\mathfrak{D}^{*} v^{*}$ are not greater than 3 ($<\operatorname{dim} \mathfrak{D}^{*}$). This means $\mathfrak{D} * \mathfrak{b}+\mathfrak{D} v^{*}$ has no m^{*}-primary component, hence $\mathfrak{c}=\mathfrak{O} \frown(\mathfrak{D} \mathfrak{b}$ $+\mathfrak{D} v^{*}$) has no m-primary components by Lemma 2. Since $\mathfrak{c} \supset \mathfrak{b}$, we

no \mathfrak{m}^{*}-components. Hence $\mathfrak{D}{ }^{*} \mathfrak{b}\left(=\mathfrak{D}{ }^{*} \mathfrak{c}\right.$) has no \mathfrak{m}^{*}-component, consequently \mathfrak{b} has no m-component, and therefore, $\mathfrak{D} * \mathfrak{b}: \mathfrak{D}^{*} v^{*}=\mathfrak{D} *$.

Since $\bar{\circlearrowleft} \varphi\left(p_{1}\right): \bar{Ð} \varphi\left(p_{2}\right)=\bar{ఏ} \bar{a}$, we can find \bar{b} which satisfies $\bar{b} \varphi\left(p_{1}\right)$ $-\bar{a} \varphi\left(p_{2}\right)=0$. Let a^{*} and b^{*} be elements of \mathfrak{D}^{*} such that $\varphi\left(a^{*}\right)=a$, $\varphi\left(b^{*}\right)=b$, then we have $b^{*} p_{1}-a^{*} p_{2} \in \mathfrak{D}^{*} v^{*}$, thus we have $b^{*} p_{1}-a^{*} p_{2}$ $\in \mathfrak{D}^{*} \mathfrak{b} \cdot v^{*}$ since $\mathfrak{D}^{*} \mathfrak{b}: \mathfrak{D}^{*} v^{*}=\mathfrak{D}$ b. Therefore we have $b^{*} p_{1}-a^{*} p_{2}$ $=v^{*}\left(c^{*} p_{1}+d^{*} p_{2}\right)$, consequently we have $b_{0}^{*} p_{1}-a_{0}^{*} p_{2}=0$, where $b_{0}^{*}=b^{*}$ $-v^{*} c^{*}, \quad a_{0}^{*}=a^{*}+v^{*} d^{*}$. Hence $a_{0}^{*} \in \mathfrak{D}^{*} p_{1}: \mathfrak{D}^{*} p_{2}=\mathfrak{D}{ }^{*}$ a. On the other hand, from the equation $\varphi\left(a_{0}^{*}\right)=\varphi\left(a^{*}\right)=\bar{a}$, we have $\mathfrak{D}^{*} \subset \varphi^{-1}(\bar{Ð} \bar{a})$ $=\mathfrak{D} a_{0}^{*}+\mathfrak{D} v^{*}$, this implies that $\mathfrak{D}{ }^{*} \mathfrak{a}=\mathfrak{D}^{*} a_{0}^{*}$. Since $\mathfrak{a} \notin \mathfrak{p}$, we have $a_{0}^{*} \nsubseteq \mathfrak{D}^{*} \mathfrak{p}$, and $p_{1} \in \mathfrak{D} *_{\mathfrak{a}}=\mathfrak{D} * a_{0}^{*}$ implies that $p_{1} \in \mathfrak{D} * \mathfrak{p} \cdot \mathfrak{D} a_{0}^{*} \subset \mathfrak{D}{ }^{*} \mathfrak{p} \cdot \mathfrak{m}^{*}$, consequently $p_{1} \in \mathfrak{D} \frown \mathfrak{D}^{*} \mathfrak{p} \cdot \mathfrak{m}^{*}=\mathfrak{p} \cdot \mathfrak{m}$, thus we have obtained contradiction.

References

[1] M. Nagata: A general theory of algebraic geometry over Dedekind domains, II, J. Amer. Math. Soc., 80, no. 2, 382-420 (1598).
[2] O. Zariski: The theorem of unique factorization in p-series ring (unpublished).
[3] M. Auslander and D. A. Buchsbaum: Unique factorization in regular local rings, Proc. Nat. Acad. Sci., U. S. A., 45, 733-734 (1959).
[4] D. G. Northcott: On unmixed ideals in regular local rings. Proc. Lond. Math. Soc., 3, 20-23 (1953).

