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Recently Auslander and Buchsbaum 3 have proved that every
regular local ring is a unique factorization ring. This proof depends
upon the following result of Nagata _1" If every vegulav local ving

of dimension 3 is a unique fac$oriza$ion ring, then so is every
regular local ring of any dimension (see 1, pp. 411-413).

This theorem was proed independently by Zariski 2.
Nagata proved this theorem by using homological method and

ideas. The purpose of this paper is to prove anew this theorem by
a purely ideal-theoretic method in a simpler way than in 1 and 2.

Let (C) be an n dimensional regular local ring.
Let m (C)u,-+-(C)u.+ +(C)u be the maximal ideal of (C), and

(C)’--(C)X,X, ...,X be the polynomial ring over (C). Then m’
=mX, X,...,X is a prime ideal of (C)’. Let (C)* be the quotient
ring of (C)’ with respect to m’, then * will be n dimensional regular
local ring, and m*-(C)*u+(C)*u+...+(C)*u will be the maximal
ideal of (C)*. In the following, we shall use , 5, p, q, etc. to denote
ideals in (C), and * 13", t* *q etc. to denote ideals in (C)*.

We note the following well-known lemma without proof (see, for
example, 4).

Lemma 1. We have

*--.
(ii) If p is a prime ideal in (C),then so is (C)*p in (C)*, and if

q is p-primary, then (C)*q is (C)*p-primary. Moreover rank
p--rank (C)*.

A less familiar lemma is:
Lemma 2. Let v*--uX+uX+.. +uX, then v* is an element

of a minimal base of m*. Moreover, (C)*av* holds if and only if

Proof. From m*-(C)*u+(C)*u+...+(C)*u follows the equation
m*-*v*+*u+... +*u. Therefore v* is an element o a mini-
mal base of m*.

Since every element of (C)* can be expressed in the form P(x)/Q(x),
P()eX,, X.,..., X, Q()mX, X, ..., X, (C)*v* implies that
X, X,..., X_ v*, this means u, u, ..., u, and thereby com-
pletes the proof.
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Now, let be a natural homomorphism of (C)* onto the regular

local ring (C)=(C)*/(C)*v* of dimension nl.
Lemma 3. Let (C) be a regular local ring of dimension n 3,

and let and 5 be ideals of (C) with a condition rank --rank 5--1.
Then, there exists a minimal prime ideal in (C) belonging to and

5, if and only if there exists a minimal prime ideal in (C) belonging
to ((C)*) and (’5).

Proof. Necessity is evident. Suppose that there exists a minimal
prime ideal which belongs to ((C)*) and ((C)*5). From the assump-
tion rank --1 follows rank -()-2. And we have -()(C)*,
(C)*5. On the other hand, we have -()v*, this implies that rank
(C)-()-1, from Lemma 2. This means that there exists a minimal
prime ideal in (C) which belongs to and 5.

Theorem. If every regular local ring of dimension 3 is a unique

factorization ring, then so is every regular local ring of any di-
mension.

Proof. If dim (C)-1 or 2, it is easy to prove that (C) is a unique
factorization ring (see, for example, 1, Th. 4, p. 410J).

Therefore, for the purpose of the proof, we may assume that
dim (C):>3, and may assume that every regular local ring of dimension
less than dim (C) is a unique factorization ring. Let be a prime ideal
of rank 1 in . Since =)+.m (where ) is the symbolic square"
of p, i.e. the 0-primary component of ), there exists an element p
of such that p) and p. m. Assume that (C)p. We shall
show that this implies a contradiction. It is well known that this
completes the proof (see, for example, 1, Lemma 1, p. 408).

Since pO(), we have (C)p--p, where is unmixed, of rank 1
and not contained in . Since a’p-, there exists an element p. of

P such that ’(C)p.--. By assumption, (C)(--((C)*)) is a unique fac-
torization ring, consequently we have (p)-y, where y and are

such elements of (C) that (C)*O-((C)Y), (C)*-((C)). By Lemma
3, y and have no common prime element. Suppose that 5-(C)p
and we shall prove that 5 has no m-primary component. From ((C)’5)
=(C).-t-(p), we have (*5)--((C)--q(p.)), since (C)’(C)
=(C) and (C)y(p.). By Lemma 3, and (p.) have no common prime

element, therefore (C)+(C)(p.) is unmixed and of rank 2 (<dim (C)).
Since ranks of components of ((C)*Ii) are not greater than 2, ranks of
components of (C)*5+(C)*v* are not greater than 3 (< dim (C)*). This
means (C)*b+(C)*v* has no m*-primary component, hence
+(C)*v*) has no m-primary components by Lemma 2. Since 5, we
have (C)’5-[-(C)*v*(C)*c(C)’5, this implies *--(C)’5 because (C)*c has
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no m*-components. Hence *b(=(C)*c) has no m*-component, con-
sequently 5 has no m-component, and therefore, (C)*b" (C)*v*--(C)*b.

Since (C)(pl)’(C)(p.)---(C)g, we can find b which satisfies bq(pl)
g(p.) 0. Let a* and b* be elements of (C)* such that (a*)-a,

(b*)--b, then we have b*p--a*p2e(C)*v*, thus we have b*p--a*p.
e,*b.v* since *5"*v*--(C)*b. Therefore we have b*pl--a*p
-v*(c*p+d*p.), consequently we have bo*p--ao*p--O, where bo*--b*
--v’c*, a*-a*+v*d*. Hence ao*e(C)*p’(C)*p.--(C)*a. On the other

hand, from the equation (a*o)-(a*)-g, we have (C)*a-((C))
=(C)*ao* +(C)*v*, this implies that (C)*a-(C)*ao*. Since a : p, we have
ao*(C)*, and pe(C)*a--(C)*ao* implies that pe(C)*.(C)*ao*(C)*P.m*,
consequently Pl e(C)(C)*P’ m*--p, m, thus we have obtained contradic-
tion.
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