71. Remarks on My Previous Paper on Congruence Zeta-Functions

By Makoto ISHIDA

Mathematical Institute, University of Tokyo (Comm. by Z. SUETUNA, M.J.A., July 13, 1959)

1. First I want to give a correction of Lemma 2 in my previous paper [1].

Lemma. Let H be a finite group of order h and χ be an irreducible character of H. Then we have

 $\sum_{\tau \in H} \{\chi(\tau)^2 - \chi(\tau^2)\} = 0 \text{ or } 2h.$

Moreover the second case occurs only if χ is real and the degree of χ is even.

Proof. Let $F: \tau \to F(\tau) = (a_{ij}(\tau))$ be an irreducible representation of H with the character χ . Then $F^*: \tau \to F^*(\tau) = (a_{ij}^*(\tau)) = {}^tF(\tau^{-1}) = (a_{ji}(\tau^{-1}))$ is also an irreducible representation of H with the character $\overline{\chi}$. If F and F^* are not equivalent (i.e. χ is not real), the proof is the same as in [1]. Hence we may restrict ourselves to the case where F and F^* are equivalent; then we have $\sum_{\tau \in H} \chi(\tau)^2 = h$. Let U be a non-singular matrix such that ${}^{t}F(\tau^{-1}) = F^{*}(\tau) = U^{-1}F(\tau)U$ for all τ in H. Then we have $F(\tau) = {}^{t}U^{t}F(\tau^{-1})^{t}U^{-1} = {}^{t}UU^{-1}F(\tau)({}^{t}UU^{-1})^{-1}$ for all τ in H and so, by a lemma of Schur, ${}^{t}UU^{-1} = \rho E$, where E denotes the unit matrix. Considering the determinants of the both sides, we have $\rho^{f}=1$, where f is the degree of F. On the other hand, by ${}^{t}U = \rho U$, we have $U = \rho^{2}U$ and so $\rho^2 = 1$. Hence we have $\rho = \pm 1$ and, especially, $\rho = 1$ if f is odd. Let $U=(u_{ij})$ and $V=U^{-1}=(v_{ij})$. Then, as in [1], we have, by another lemma of Schur, $\sum_{\tau \in H} \chi(\tau^2) = \sum_{i,j,\tau} a_{ij}(\tau) a_{ij}^*(\tau^{-1}) = \sum_{i,j,\tau} a_{ij}(\tau) \sum_{\mu,\nu} v_{i\mu} a_{\mu\nu}(\tau^{-1})$ $u_{\nu j} = \sum_{i,j} \sum_{\mu,\nu} v_{i\mu} u_{\nu j} \sum_{\tau} a_{ij}(\tau) a_{\mu\nu}(\tau^{-1}) = h/f \cdot \sum_{i,j} v_{ij} u_{ij} = h/f \cdot \operatorname{tr}(U^{-1t}U) = h/f$ $\cdot \operatorname{tr}(\rho E) = \pm h.$

2. Let A/V be a Galois covering of degree n, defined over a finite field k with q elements, where A is an abelian variety and V is a normal, projective variety of dimension r; let G be the Galois group. Let Ξ be the character of the representation $M_i | G$ (the restriction of the *l*-adic representation of A to G) of G. Then, by the above lemma, $1/2n \cdot \sum_{\sigma \in G} \{\Xi(\sigma)^2 - \Xi(\sigma^2)\}$ is a non-negative rational integer. By the orthogonality relation of group-characters and the results in [1], we have the following statement, which gives a correction and a supplement to the last part of Theorem 1 in [1].

Theorem. Let the notations be as explained above. Then the zeta-function Z(u, V) of V over k has $1/2n \cdot \sum_{\sigma \in G} \{\Xi(\sigma)^2 - \Xi(\sigma^2)\}$ poles on the circle $|u| = q^{-(r-1)}$. Moreover, if there exist actually such poles,

M. Ishida

at least one of them is either $u = q^{-(r-1)}$ or $u = -q^{-(r-1)}$.

Let $Z^{(2)}(u, V)$ be the zeta-function of V over k_2 , the extension of k of degree 2, i.e. a finite field with q^2 elements. Then it is easily verified that the poles of $Z^{(2)}(u, V)$ on the circle $|u| = (q^2)^{-(r-1)}$ are equal to the squares of those of Z(u, V) on the circle $|u| = q^{-(r-1)}$ respectively. Hence, if there exist such poles of $Z^{(2)}(u, V)$, at least one of them is $u = (q^2)^{-(r-1)}$.

I thank Mr. K. Iwasaki for his kind advice.

Reference

 M. Ishida: On zeta-functions and L-series of algebraic varieties. II, Proc. Japan Acad., 34, 395-399 (1958).

322