108. Remarks on Pseudo-resolvents and Infinitesimal Generators of Semi-groups

By Tosio Kato

Department of Physics, University of Tokyo (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1959)

Let X be a Banach space and E(X) the algebra of all bounded linear operators on X to X. As is well known, a linear operator A in X is the infinitesimal generator of a semi-group $\{U(t)\}$, $0 < t < \infty$, $U(t) \in E(X)$, if i) A is densely defined, ii) the resolvent $(\lambda I - A)^{-1} \in E(X)$ exists for sufficiently large real λ and $||(\lambda I - A)^{-1}|| = O(\lambda^{-1})$ for $\lambda \to +\infty$ and iii) certain additional conditions are satisfied according to the types of semi-groups considered.¹⁾

The object of the present note is to point out that i) is a consequence of ii), provided that the underlying space X is locally sequentially weakly compact (abbr. l.s.w.c.). In particular this is the case if X is reflexive.²⁾ This will be shown below as a consequence of a general theorem on pseudo-resolvents.³⁾ A pseudo-resolvent $J(\lambda)$ is a function on a subset D of the complex plane to E(X) satisfying the resolvent equation

(1)
$$J(\lambda) - J(\mu) = -(\lambda - \mu)J(\lambda)J(\mu), \quad \lambda, \mu \in D.$$

It follows directly from (1) that all $J(\lambda)$, $\lambda \in D$, have a common null space N and a common range R, which will be called respectively the null space and the range of the pseudo-resolvent under consideration. N is a closed subspace of X, but R need not be closed; we denote by [R] the closure of R. Note that $J(\lambda)$ is a resolvent (of a closed linear operator A) if and only if $N=\{0\}$; in this case R coincides with the domain of A.

Theorem. Let $J(\lambda)$, $\lambda \in D$, be a pseudo-resolvent with the null space N and the range R. Let there be a sequence $\{\lambda_n\}$, $n=1, 2, \cdots$, such that

$$(2) \qquad \qquad \lambda_n \in D, \quad |\lambda_n| \to +\infty, \ ||\lambda_n J(\lambda_n)|| \le M = \text{const.}$$

Then we have

(3)

$$N \cap [R] = \{0\}.$$

If, in particular, X is l.s.w.c., then

 $(4) X = N \oplus [R].$

¹⁾ See E. Hille and R. S. Phillips: Functional analysis and semi-groups, Am. Math. Soc. Colloq. Publ., Vol. 31, Theorems 12.3.1, 12.3.2, 12.4.1 and 12.5.1.

²⁾ When X is a Hilbert space, this fact was noted by C. Foiaș, Bull. Soc. Math. France, 85, 263 (1957).

³⁾ Hille and Phillips: Footnote 1), pp. 126 and 183.

T. KATO

Corollary 1. If $J(\lambda)$ is a pseudo-resolvent satisfying (2) and if R is dense in X, then $J(\lambda)$ is a resolvent.⁴⁾

Corollary 2. If X is l.s.w.c. and $J(\lambda) = (\lambda I - A)^{-1}$ is the resolvent of a closed linear operator A satisfying (2), then A is densely defined.

Proof of the theorem. (2) implies that $||J(\lambda_n)|| \to 0$ for $n \to \infty$. Setting $\lambda = \lambda_n$, $\mu = \lambda_1$ in (1) and making $n \to \infty$, we thus obtain (5) $||[\lambda_n J(\lambda_n) - I]J(\mu)|| \to 0$, $n \to \infty$, $\mu = \lambda_1$. Since each $x \in R$ has the form $x = J(\mu)y$, it follows that (6) $\lambda_n J(\lambda_n)x \to x$ for $x \in R$. Since $\{\lambda_n J(\lambda_n)\}$ is uniformly bounded, (6) can be extended to all $x \in [R]$. If $x \in N \cap [R]$, we have (6) and $J(\lambda_n)x = 0$ so that x = 0; this proves (3).

Assume now that X is l.s.w.c. For any $x \in X$, the sequence $\{\lambda_n J(\lambda_n)x\}$ is bounded; hence it contains a subsequence converging weakly to a $y \in X$. We may assume without loss of generality that (7) $\lambda_n J(\lambda_n)x \rightarrow y$ weakly. This implies that $y \in [R]$ because R is weakly closed. On the other hand, the application of $J(\mu)$ to (7) gives $\lambda_n J(\lambda_n) J(\mu)x = J(\mu)\lambda_n J(\lambda_n)x \rightarrow J(\mu)y$ weakly. In view of (5), this gives $J(\mu)x = J(\mu)y$, $x - y \in N$. Thus we have $x \in N + [R]$ for any x. Combined with (3), this proves

(4).

Remark. (4) and Corollary 2 may be false if X is not l.s.w.c., as is seen from the following example. Let X=C[0, 1] and $A=d^2/dx^2$ with the boundary conditions f(0)=f(1)=0. The resolvent of A satisfies the inequality $||(\lambda I-A)^{-1}|| \leq 1/\text{Re }\lambda$ for $\text{Re }\lambda>0$, the resolvent set containing the half plane $\text{Re }\lambda>0$. But A is not densely defined.

⁴⁾ This may be used to justify the proof of Theorem 5.1 of H. F. Trotter, Pacific J. Math., 8, 887 (1958), in which it is tacitly assumed that $N = \{0\}$.