105. A Unique Continuation Theorem of a Parabolic Differential Equation

By Taira Shirota

Osaka University
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1959)

1. Introduction. Let G be a convex domain of the euclidean $n+1$-space $R_{t, x}\left(-\infty<t<+\infty,-\infty<x_{i}<+\infty(i=1,2, \cdots, n)\right.$, containing a curve $C:\left\{\left(t, x_{i}(t)\right) \mid t \in[a, b]\right\}$, where $x_{i}(t) \in C^{2}[a, b]$.

Consider real solutions u of an inequality of the following kind:

$$
\begin{equation*}
\left|\frac{\partial u(t, x)}{\hat{\partial} t}-a_{i j}(t, x) \frac{\partial^{2} u(t, x)}{\partial x_{i} \partial x_{j}}\right| \leqq M\left\{\sum_{i}^{n}\left|\frac{\partial u(t, x)}{\partial x_{i}}\right|+|u(t, x)|\right\} . \tag{1.1}
\end{equation*}
$$

Here $\left(\left(a_{i j}(t, x)\right)\right)$ denotes a positive definite, symmetric matrix of real valued functions $a_{i j}(t, x) \in C^{2}(G)$, and M a constant.

Our purpose in this note is to prove the following theorem for solutions of (1.1).

Theorem. If u is a solution of (1.1) in the convex domain G and if for any $\alpha>0$, then u vanishes identically in the horizontal component.

The method is based upon the ideas of H. O. Cordes [2] and E. Heinz [3]. The tools used are all elementary, but our proof is somewhat complicated.
2. The Cordes' transformation. Assuming $[a, b] \supset[-\varepsilon, 1+\varepsilon]$ $(\varepsilon>0)$, let $\AA(t)$ be the positive square root of the matrix $A(t)=$ $\left(\left(a_{i j}(t, x(t))\right)\right)$. Let

$$
x-x(t)=\AA(t) \widetilde{x} \quad \text { for } \quad t \in[-\varepsilon, 1+\varepsilon] \text {, }
$$

then we may assume that for some $R_{1}>0$,
a) $a_{i k}(t, \tilde{x}) \in C^{2}\left([-\varepsilon, 1+\varepsilon] \times D_{R_{1}}\right) \quad\left(D_{R_{1}}=\left\{x| | x \mid \leqq R_{1}\right\}\right)$,
b) $a_{i k}(t, 0)=\delta_{i k}$,
c) there are positive numbers C_{1} and C_{2} such that for any real vector ($\xi_{1}, \xi_{2}, \cdots, \xi_{n}$)

$$
C_{1} \sum_{1}^{n} \xi_{i}^{2} \leqq \sum a_{i j}(t, \widetilde{x}) \xi_{i} \xi_{j} \leqq C_{2} \sum_{1}^{n} \xi_{i}^{2}
$$

From (a), (b) and (c) we see the following
Lemma 1. For some $R_{2}, \widetilde{R}_{2}<R_{1}$ there is a topological transtormation from $[-\varepsilon, 1+\varepsilon] \times D_{R_{2}}$ onto $[-\varepsilon, 1+\varepsilon] \times D_{\tilde{R}_{2}}$:

$$
\widetilde{y}=\widetilde{y}(t, \widetilde{x}), t=t
$$

such that it satisfies the following conditions:
I. 1) $\tilde{y}(t, 0) \equiv 0$,
2) $\frac{\partial \widetilde{y}_{i}}{\partial \widetilde{x}_{j}}, \frac{\partial \widetilde{x}_{i}}{\partial \widetilde{y}_{j}}, \frac{\partial^{2} \widetilde{y}_{i}}{\partial \widetilde{y}_{j} \partial \widetilde{x}_{k}}, \frac{\partial^{2} \widetilde{x}_{i}}{\partial \widetilde{y}_{j} \widetilde{y}_{k}}$ are continuous over $[-\varepsilon, 1+\varepsilon] \times$ ($D_{\tilde{R}_{2}}-\{0\}$) and

$$
\left|\frac{\partial \tilde{y}_{i}}{\partial \widetilde{x}_{j}}\right|<C,\left|\frac{\partial \widetilde{x}_{i}}{\partial \widetilde{y}_{j}}\right|<C,\left|\frac{\partial^{2} \widetilde{y}_{i}}{\partial \widetilde{x}_{j} \partial \widetilde{x}_{k}}\right|<C|y|^{-1},\left|\frac{\partial^{2} \widetilde{x}_{i}}{\partial \widetilde{y}_{j} \widetilde{y}_{k}}\right|<C|y|^{-1},
$$

3) $\frac{\partial \widetilde{y}_{i}}{\partial t}$ is continuous over $[-\varepsilon, 1+\varepsilon] \times\left(D_{\tilde{R}_{2}}-\{0\}\right)$ and $\left|\frac{\partial \widetilde{y}_{i}}{\partial t}\right|<C$,
II. for any $\tilde{y}: 0<|\tilde{y}| \leqq \widetilde{R}_{2}$, there is a suitable polar coordinates $\left(r, \varphi_{o}\right)$ such that

$$
\begin{equation*}
\frac{\partial}{\partial \widetilde{x}_{i}} a_{i j}(t, \widetilde{x}) \frac{\partial u}{\partial \widetilde{x}_{j}}=p(t, \widetilde{y})\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{n-1}{r} \frac{\partial}{\partial r}+\frac{N}{r^{2}}\right) u+p_{i}(t, \widetilde{y}) \frac{\partial u}{\partial \widetilde{y}_{i}}, \tag{2.1}
\end{equation*}
$$

where $p(t, \tilde{y}), p_{i}(t, \tilde{y})$ and the operator N satisfy the following conditions:

1. $C>p(t, \widetilde{y})>C^{-1},\left|p_{i}(t, \widetilde{y})\right|<C$,
2. $|p(t, \widetilde{y})|<C,\left|\frac{\partial p(t, \widetilde{y})}{\partial t}\right|<C,\left|\frac{\partial p(t, \tilde{y})}{\partial r}\right|<C,\left|\frac{\partial p(t, \widetilde{y})}{\partial \varphi_{c}}\right|<C$,
3. $N=\frac{1}{\lambda(\widetilde{y})} \frac{\partial}{\partial \varphi_{\sigma}} \lambda(\widetilde{y}) \bar{a}_{o r}(t, \tilde{y}) \frac{\partial}{\partial \varphi_{r}}, \lambda(y)=\frac{d O_{1}}{d \varphi_{1} d \varphi_{2} \cdots d \varphi_{n-1}}$,
where $d O_{1}$ is the usual surface element of the unit sphere,
4. there are two positive numbers \bar{C}_{1} and \bar{C}_{2} such that

$$
\bar{C}_{1} \sum_{1}^{n-1} \eta_{o}^{2} \leqq \sum \bar{a}_{o t}\left(t, \widetilde{y} \eta_{o} \eta_{t}=\bar{C}_{2} \sum_{1}^{n-1} \eta_{\sigma}^{2}\right.
$$

for any real vector $\left\{\eta_{1} \cdots \eta_{n-1}\right\}$,
5. $\quad \bar{a}_{o r}, \frac{\partial \bar{a}_{o r}}{\partial t}, \frac{\partial \bar{a}_{o r}}{\partial r}$ and $\frac{\partial \bar{a}_{o r}}{\partial \varphi_{\rho}}$ are continuous and

$$
\left|\bar{a}_{o r}\right|<C,\left|\frac{\partial \bar{a}_{o r}}{\partial t}\right|<C,\left|\frac{\partial \bar{a}_{o r}}{\partial r}\right|<C,\left|\frac{\partial \bar{a}_{o r}}{\partial \varphi_{\rho}}\right|<C,
$$

where the constants \bar{C}_{1}, \bar{C}_{2} and C depend only on R_{1}, C_{1}, C_{2} and the derivatives of $a_{i j}(t, x)$ of order $\leqq 2$. (Here we use a finite number of fixed, suitable systems of polar-coordinates covering the unit sphere.)

To prove the above proposition, we only remark that

$$
\nu_{o}\left(t, r, \theta_{1}, \theta_{2}, \cdots, \theta_{n-1}\right)=\frac{\sum a_{i k}(t, \widetilde{x}) \frac{\tilde{x}_{i}}{r} \cdot \theta_{\sigma \mid \tilde{x_{x}}}}{\sum a_{i k}(t, \widetilde{x}) \frac{\tilde{x}_{i}}{r} \cdot \frac{\widetilde{x}_{k}}{r}}
$$

satisfies the following conditions: for any $t \in[-\varepsilon, 1+\varepsilon]$ and $\widetilde{x}: 0 \leqq|\widetilde{x}|$ $<R_{1}$ the function $\nu_{o}(t, r, \theta), \nu_{o \mid r}, \nu_{o \mid \theta_{\tau}}, \nu_{\sigma \mid t}, \nu_{\sigma \mid \theta_{\theta} \theta}, \nu_{o \mid r, \theta_{\tau}}$ and $\nu_{o \mid t, \theta_{\tau}}$ are all continuous, and for any $t \in[-\varepsilon, 1+\varepsilon]$ and $\widetilde{x}: 0<|\widetilde{x}| \leqq R_{1}, \nu_{o \mid r r,} \nu_{o \mid r t}$ and $\nu_{\text {oft }}$ are continuous, where $\nu(t, r, \theta)$ is considered as a function of t, r, θ. Here and in the proof of the following sections $\left.u\right|_{h}$ denotes $\frac{\partial u}{\partial h}$.

Furthermore by the transformation: $(t, \tilde{y})=\left(t, r, \varphi_{\sigma}\right) \rightarrow\left(t, s, \varphi_{\sigma}\right)$ $=(t, y)$:

$$
s(r)=r e^{\int_{0}^{\left.r_{(}-m_{0} \tau-1\right) \frac{d \tau}{\tau}}}
$$

we see the following
Lemma 2. By the transformation $(t, \tilde{y}) \rightarrow(t, y)$ with a sufficiently large m_{0}, the following condition is satisfied: for any $w \in C^{2}(y:|y|=1)$ and for any $t \in[-\varepsilon, 1+\varepsilon]$,
III. $\frac{\partial}{\partial s} \int N \omega \cdot \omega d O_{1} \leqq m_{0} \int N \omega \cdot \omega d O_{1}<0$
as well as Conditions I and II.
3. The first inequality. Using the above lemmas, we will deduce the Heinz' inequality with respect to (1.1). For this purpose we may assume that

$$
\begin{align*}
L_{1}(u) & =q(t, x) \frac{\partial u}{\partial t}-a_{i \jmath}(t, x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+b_{i}(t, x) \frac{\partial u}{\partial x_{i}} \\
& =q(t, x) \frac{\partial u}{\partial t}-\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{n-1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} N\right) u \tag{3.1}
\end{align*}
$$

where $q(t, x)(>\delta>0) \in \bar{C}^{1}\left(t, r, \varphi_{o}\right), a_{i j}(t, x) \in \bar{C}^{0}(t, x), \quad b_{i}(t, x) \in \bar{C}^{0}(t, x)$ and the coefficients of $N \in \bar{C}^{1}\left(t, r, \varphi_{\sigma}\right) \quad(0<r \leqq R)$ for fixed, suitable polar coordinates $\left(r, \varphi_{\sigma}\right)$ of x.

Furthermore we may assume that u satisfies the condition (1.2) with $x_{i}(t)=0$ for $t \in[-\varepsilon, 1+\varepsilon]$.
Put $D_{r_{0}, K_{0}}=\left\{(t, x) \mid 0 \leqq t \leqq 1\right.$ and $\left.|x| \leqq r_{0} \wedge K_{0}{ }^{-1} t\right\}$ and let $\varphi_{r_{0}, K_{0}}(t, x)$ be such that: (1) it is in $\bar{C}^{2}\left(D_{r_{0}, K_{0}}-\{0\}\right)$, (2) its carrier is contained in $D_{r_{0}, K_{0}}$, (3) $\varphi_{r_{0}, K_{0}} \equiv 1$ in $D_{\frac{1}{2} r_{0}, 2 K_{0}}-\{0\}$ and (4) $v=u \Psi_{r_{0}, K_{0}}$ also satisfies the condition (1.2).

Furthermore let f be a monotone decreasing, smooth function such that

$$
f(t)=1 \quad \text { for } \quad t \leqq \frac{2}{3}, \quad f(t)>0 \quad \text { for } t<1 \quad \text { and } \quad f(1)=0
$$

Let $\alpha(t)=\alpha f(t)+(n-2)$. Finally let $\varphi(t)$ be a monotone increasing, smooth function such that

$$
\varphi(t)=t \quad \text { for } \quad t \leqq \frac{1}{4}, \quad \varphi(t)=1 \quad \text { for } \quad t \geqq \frac{1}{2}
$$

and let $\Phi_{\alpha}(t)=\varphi(t)^{2 \alpha} e^{k t}$. Then we see the following
Lemma 3. For sufficiently small r_{0} and sufficiently large K_{0} and k there is a constant α_{0} such that for any $\alpha>\alpha_{0}$,

$$
\begin{align*}
& \alpha^{2} k K_{1} \iint_{D r_{0}, K_{0}}|v|^{2} r^{-\alpha(t)} \Phi_{\alpha}(t) d x d t \tag{3.2}\\
\leqq & \iint_{D r_{0}, K_{0}}\left|L_{1}(v)\right|^{2} r^{2-\alpha(t)} \Phi_{\alpha}(t) d x d t+\left.\alpha^{2} K_{2} \int_{D r_{0}}|v|^{2} r^{-\alpha(t)} \Phi_{\alpha}(t) d x\right|_{t=1},
\end{align*}
$$

where K_{0}, K_{1}, K_{2} are constant numbers depending only the derivatives with respect to t, r, and φ_{o}, of q of order $\leqq 1$, the derivatives with respect to t, r of the coefficients of N, and f of order $\leqq 1$, which are independent of systems of polar-coordinates $\left\{\varphi_{\rho}\right\}$. (Here and in the following proofs we denote such constants by K.)
(Outline of the proof). By the usual limit processes [1, 2] we may assume that the coefficients of L_{1} and v are sufficiently smooth. Let $\beta(t)=\frac{1}{2}(\alpha(t)-n+2)$ and $u=r^{\beta(t)} z$. Then we see that

$$
\begin{align*}
& \iint\left|L_{1}(v)\right|^{2} r^{2-\alpha(t)} \Phi_{\alpha}(t) d x d t \\
& \geqq \iiint\left\{\left|q r^{2} z_{\mid t}\right|^{2}+\left|L^{* *} z\right|^{2}+2 L^{*} z \cdot L^{* *} z-2 r^{2} z_{\mid t} \cdot q \cdot\left(L^{*} z+L^{* *} z\right)\right\} \cdot \tag{3.3}\\
& \cdot r^{-1} \Phi_{\alpha}(t) d O_{1} d r d t
\end{align*}
$$

where

$$
\begin{aligned}
& L^{*} z=r\left(r z_{\mid r}\right)_{\mid r}+N z+\left[\frac{\alpha^{2}-(n-2)^{2}}{4}-q \alpha \frac{f^{\prime}(t)}{2} r^{2} \log r\right] z, \\
& L^{* *} z=\alpha r z_{\mid r} .
\end{aligned}
$$

From $\varphi^{\prime} \geqq 0$ it implies that for any K there is a number k_{0} such that for $k>k_{0}$

$$
\left(q \Phi_{\alpha}\right)_{\mid t}-K\left(q \Phi_{\alpha}\right) \geqq \frac{1}{2}\left(q \Phi_{\alpha}\right)_{\mid t}
$$

Therefore by partial integrations with respect to t and r and from III in $\S 2$ and the relation $f^{\prime} \leqq 0$, it follows that

$$
\begin{align*}
& \geqq \iiint\left\{r^{3} q^{2} \Phi_{\alpha}\left(z_{\mid t}\right)^{2}+\alpha^{2} r \Phi_{\alpha}\left(z_{\mid r}\right)^{2}-2(\alpha-2) r^{2} q \Phi_{\alpha} z_{\mid r} \cdot z_{\mid t}\right. \tag{3.3}\\
& \left.\quad+2 r^{3}\left(q \Phi_{\alpha}\right)_{\mid r} z_{\mid r} \cdot z_{\mid t}-r^{3}\left(q \Phi_{\alpha}\right)_{\mid t}\left(z_{\mid r}\right)^{2}-\alpha K_{3} r^{2}\left(q \Phi_{\alpha}\right)_{\mid t} z^{2}\right\} d O_{1} d r d t \\
& \\
& \quad-\alpha^{2} K_{4} \iiint r \Phi_{\alpha} \cdot z^{2} d O_{1} d r d t \\
& + \\
& +\iiint\left\{-\alpha m_{0} \Phi_{\alpha} \cdot z \cdot M z+r\left(q \Phi_{\alpha}\right)_{\mid l} z \cdot M z+r q \Phi_{\alpha} z \cdot M_{\mid t} z\right\} d O_{1} d r d t \\
& + \\
& + \\
& +\left(q \int\left\{q r \Phi_{\alpha}\right)_{\mid r} r^{2} z^{2}-r q \Phi_{\alpha} \cdot z \cdot r\left(r z_{\mid r}\right)_{\mid r}+2 r\left(q \Phi_{\alpha}\right) z^{2}-r^{3}\left(q \Phi_{\alpha}\right)_{\mid r} z \cdot z_{\mid r}\right. \\
& - \\
& \left.-\alpha r^{2} q \Phi_{\alpha} \cdot K_{5} z^{2}\right\} d \Phi_{1} \cdot \frac{\alpha^{2}-(n-2)^{2}}{4} \cdot z^{2} \\
&
\end{align*}
$$

Furthermore we note that for sufficiently small r_{0}, for sufficiently large K_{0} and k, there is a number α_{0} such that for any $\alpha>\alpha_{0}$

$$
\begin{gather*}
\alpha \Phi_{\alpha}-\left|r^{2}\left(q \Phi_{\alpha}\right)_{\mid t}\right| \geqq 0, \tag{3.4}\\
m_{0} \alpha \Phi_{\alpha}-\left|r\left(q \Phi_{\alpha}\right)_{1 t}\right|-r q \Phi_{\alpha} K \geqq 0 . \tag{3.4}
\end{gather*}
$$

From (3.4) ${ }_{1},(3.4)_{2}$ and II in §2, it follows that

$$
\begin{equation*}
\geqq K_{6} \alpha^{2} k \iiint r z^{2} \Phi_{\alpha} d O_{1} d r d t-\left.K_{7} \alpha^{2} \iint r z^{2} \Phi_{\alpha} d O_{1} d r\right|_{t=1} \tag{3.3}
\end{equation*}
$$

which implies (3.1).
4. The second inequality. Let r_{0} and K_{0} be fixed numbers such that for sufficiently large k and α_{0}, (3.2) is valid.

Then using the relation: $f(1)=0, f(t)>0$ for $t<1$ and $\varphi(t)=1$ for $t \geqq \frac{1}{2}$,
we see that even if $\left.\int|v|^{2} d x\right|_{t=1} \neq 0$, there is an interval $[c, d]$ $\left(\frac{1}{2}<c<d<1\right)$ such that for any k and for any $\alpha\left(>\alpha_{0}(k, u)\right)$

$$
\left.\int|v|^{2} r^{-\alpha(t)} \Phi_{\alpha}(t) d x\right|_{t=1} \leqq\left.\int|v|^{2} r^{-\alpha(t)} \Phi_{\alpha}(t) d x\right|_{t}(t \in[c, d])
$$

Therefore from (3.2) it follows that for sufficiently large k there is a constant K_{8} and α_{0} such that for $\alpha>\alpha_{0}$

$$
\begin{equation*}
\alpha^{2} K_{8} k \iint|v|^{2} r^{-\alpha(t)} \Phi_{\alpha}(t) d x d t \leqq \iint\left|L_{1}(v)\right|^{2} r^{2-\alpha(t)} \Phi_{\alpha}(t) d x d t \tag{4.1}
\end{equation*}
$$

Then from (3.1), (4.1) and (3.4) we see the following
Lemma 4. For sufficiently small r_{0} and for sufficiently large K_{0} and $k>k_{0}$, there are constants K_{9} and α_{0} such that for $\alpha>\alpha_{0}$

$$
\begin{align*}
& \iint\left(\frac{\alpha^{2}}{r_{0}^{2}}|v|^{2}+\left|v_{\mid x_{i}}\right|^{2}\right) r^{2-\alpha(t)} \Phi_{\alpha}(t) d x d t \\
\leqq & k^{-\frac{1}{2}} K_{9} \iint\left|L_{1}(v)\right|^{2} r^{2-\alpha(t)} \Phi_{\alpha}(t) d x d t, \tag{4.2}
\end{align*}
$$

where k_{0} depends on u and K.
5. The proof of Theorem. In this section we use the notations in §1 and §2. By (1.1) we may assume that for some r_{0}, ε

$$
\begin{equation*}
\left|L_{1}(u)\right| \leqq M\left\{|u|+\sum_{i}^{n}\left|\frac{\partial u}{\partial y_{i}}\right|\right\} \quad \text { for } \quad t \in[-\varepsilon, 1+\varepsilon] \quad \text { and } \quad r \leqq r_{0} \tag{5.1}
\end{equation*}
$$

where $2 K_{0} r_{0}<\frac{1}{4}$.
Then from Lemma 4 we see that for any $\alpha\left(>\alpha_{0}\left(K, r_{0}, k\right)\right)$

$$
\begin{aligned}
& \quad \iint_{D_{r_{0} / 2}, 2 K_{0}}\left(|u|^{2}+\left|u_{\mid y_{i}}\right|^{2}\right) r^{2-\alpha(t)} \Phi_{\alpha} d y d t \\
& \leqq k^{-\frac{1}{2}} K \iint_{D_{r_{0}, K_{0}}}\left|L_{1}(v)\right|^{2} r^{2-\alpha(t)} \Phi_{\alpha} d y d t \\
& \leqq k^{-\frac{1}{2}} K \iint_{D_{r_{0}, K_{0}}-D_{r_{0} / 2,2 K_{0}}}\left|L_{1}(v)\right|^{2} r^{2-\alpha(t)} \Phi_{\alpha} d y d t \\
& \quad+k^{-\frac{1}{2}} K \cdot M \iint_{D r_{0} / 2,2 K_{0}}\left(|u|^{2}+\left|u_{\mid y_{i}}\right|^{2}\right) r^{2-\alpha(t)} \Phi_{\alpha} d y d t .
\end{aligned}
$$

Accordingly choosing k sufficiently large such that

$$
2 K \cdot M<k^{\frac{1}{2}},
$$

it follows that for any $\alpha>\alpha_{0}$

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{r_{0}}{3 K_{0}}\right)^{2-\alpha-(n-2)} \iint_{\frac{t}{4} \leq t \leq \frac{2}{8}, r \leq r_{0} / 3 K_{0}}\left\{|u|^{2}+\left|u_{\mid y_{i}}\right|^{2}\right\} e^{k t} d y d t \\
\leqq & \left(\frac{r_{0}}{2}\right)^{2-\alpha-(n-2)} k^{-\frac{1}{2}} K \iint_{t \geq 2 K_{0}, r 0, D_{r}, K_{0}-D_{r_{0} / 2,2 K_{0}}}\left|L_{1}(v)\right|^{2} e^{k t} d y d t \\
& +\left(\frac{1}{2 K_{0}}\right)^{-\alpha-n} k^{-\frac{1}{2}} K \int_{t \leq 2 K_{0}, r_{0}, D_{r_{0}}, K_{0}-D_{r_{0} / 2,2 K_{0}}}\left|L_{1}(v)\right|^{2} e^{k t} d y d t .
\end{aligned}
$$

Therefore tending $\alpha \rightarrow \infty$, we see that

$$
u(t, y)=0 \quad \text { for } \quad t \in\left[\frac{1}{4}, \frac{2}{3}\right], \quad r \leqq r_{0} / 3 K_{0} .
$$

Since, in the above proof, the numbers $\left\{\varepsilon, \frac{1}{4}\right\}$ and $\frac{2}{3}$ may be replaced by arbitrary small and large numbers respectively, we see that $u(t, x)=0$ in a neighbourhood of C in $(a, b) \times R_{x}$. Then by a topological argument and from Lemma 1 and Lemma 4 also, we see that $u(t, x) \equiv 0$ in the horizontal component stated in $\S 1$.

Another detailed proof of Theorem and the results in my previous paper [4] with other consequences will be published in the Osaka Mathematical Journal next year.

References

[1] N. Aronszajn: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, Tech. Report 16, Univ. Kansas (1956).
[2] H. O. Cordes: Über die eindeutige Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nachr. Akad. Wiss. Göttingen, Math-phys., KI, IIa, no. 11, 239-258 (1956).
[3] E. Heinz: Über die Eindeutigkeit beim Cauchysehen Anfangswert-problem einer elliptischen, Differentialgleichung zweiter Ordnung, Nachr. Akad. Wiss. Göttingen, no. 1, 1-12 (1955).
[4] T. Shirota: A remark on the abstract analyticity in time for solutions of a parabolic equation, Proc. Japan Acad., 35, no. 7, 367-369 (1959).

