94. A Tauberian Theorem for Fourier Series
 By Shigeyuki Takagi
 Department of Mathematics, Gifu University, Gifu, Japan
 (Comm. by Z. Suetuna, m.J.A., Oct. 12, 1959)

1. Let $\varphi(t)$ be an even function, integrable in Lebesgue sense, periodic of period 2π, and let

$$
\varphi(t) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n t
$$

and

$$
s_{n}=\frac{1}{2} a_{0}+\sum_{\nu=1}^{n} a_{\nu} .
$$

Hardy and Littlewood [1] have proved that if

$$
\int_{0}^{t}|\varphi(u)| d u=o\left(t / \log \frac{1}{t}\right) \quad(t \rightarrow 0)
$$

and if for some positive δ

$$
a_{n}>-A n^{-\delta}, \quad A>0,
$$

then

$$
s_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

In this paper we shall prove a converse
Theorem. If $\sum a_{n}$ is summable to zero in Abel sense, and

$$
\begin{equation*}
\sum_{\nu=n}^{2 n}\left|a_{\nu}\right|=o(1 / \log n) \quad(n \rightarrow \infty) \tag{1}
\end{equation*}
$$

and if for some positive ρ,

$$
\begin{equation*}
\varphi^{\prime}(t)>-A t^{-\rho} \tag{2}
\end{equation*}
$$

$$
\left(0<t<t_{0}\right),
$$

where A is a positive constant independent of t, then

$$
\varphi(t) \rightarrow 0 \quad(t \rightarrow 0)
$$

2. Proof of the theorem. We require a

Lemma. If $\sum u_{n}$ is summable in Abel sense, and if

$$
u_{n+1}+u_{n+2}+\cdots+u_{n+\nu}>-K \quad(\nu=1,2, \cdots, n),
$$

where K is a positive constant, then the series $\sum u_{n}$ converges to the same sum.

This is Lemma 2, slightly modified, of Szász [2].
For the proof of our Theorem, using the argument in Yano [3], we begin with the identities

$$
\begin{equation*}
\varphi(t)=\frac{1}{h} \int_{0}^{h} \varphi(t+u) d u-\frac{1}{h} \int_{0}^{h}[\varphi(t+u)-\varphi(t)] d u \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(t)=\frac{1}{h} \int_{0}^{h} \varphi(t-u) d u+\frac{1}{h} \int_{0}^{h}[\varphi(t)-\varphi(t-u)] d u, \tag{4}
\end{equation*}
$$

where $0<h<t$. The condition (2) implies

$$
\varphi(t+u)-\varphi(t)=\int_{0}^{u} \varphi^{\prime}(t+\mathrm{v}) d \mathrm{v}>-A u t^{-\rho},
$$

for $0<u<h$. Thus, letting

$$
\begin{equation*}
h=t^{\rho+1}, \tag{5}
\end{equation*}
$$

we have, from (3)

$$
\varphi(t)<\frac{1}{h} \int_{0}^{h} \varphi(t+u) d u+A t .
$$

Similarly, from (4)

$$
\varphi(t)>\frac{1}{h} \int_{0}^{h} \varphi(t-u) d u-A t .
$$

Hence, if it is shown that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{h} \int_{0}^{h} \varphi(t \pm u) d u=0 \tag{6}
\end{equation*}
$$

where h is defined by (5), then the result $\varphi(t) \rightarrow 0$ as $t \rightarrow 0$ follows immediately from the above two inequalities.

Now, replacing $\varphi(t+u)$ by its Fourier series,

$$
\begin{align*}
& \frac{1}{h} \int_{0}^{h} \varphi(t+u) d u=\frac{1}{h} \int_{0}^{h}\left[\frac{1}{2} a_{0}+\sum_{\nu=1}^{\infty} a_{\nu} \cos \nu(t+u)\right] d u \\
& \quad=\frac{1}{h} \int_{0}^{h}\left(\frac{1}{2} a_{0}+\sum_{\nu=1}^{n-1}\right) d u+\frac{1}{h} \int_{0}^{h}\left(\sum_{\nu=n}^{N}\right) d u+\frac{1}{h} \int_{0}^{h}\left(\sum_{\nu=N+1}^{\infty}\right) d u \tag{7}\\
& \quad=\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}, \quad \text { say, }
\end{align*}
$$

where we assume that, for fixed small $t>0$,

$$
\begin{equation*}
n=\left[\frac{1}{t}\right] \quad \text { and } \quad N=\left[n^{\rho+2}\right] . \tag{8}
\end{equation*}
$$

Then, by Abel's transformation

$$
\begin{aligned}
& \mathrm{S}_{1}= \frac{1}{h} \int_{0}^{h}\left[\frac{1}{2} a_{0}+\sum_{\nu=1}^{n-1} a_{\nu} \cos \nu(t+u)\right] d u \\
&=\sum_{\nu=0}^{n-1} \mathrm{~S}_{\nu} \cdot \frac{1}{h} \int_{0}^{h}[\cos \nu(t+u)-\cos (\nu+1)(t+u)] d u \\
& \quad+\mathrm{s}_{n-1} \cdot \frac{1}{h} \int_{0}^{h} \cos n(t+u) d u .
\end{aligned}
$$

And

$$
\begin{aligned}
& \frac{1}{h} \int_{0}^{h}[\cos \nu(t+u)-\cos (\nu+1)(t+u)] d u \\
& \quad=\frac{2}{h} \int_{0}^{h} \sin \left(\nu+\frac{1}{2}\right)(t+u) \sin \frac{1}{2}(t+u) d u .
\end{aligned}
$$

Since the integrand in the last integral is positive and increasing with u in $(0, h)$ for $0<t+h<\pi / 2(n+1)$ and $0 \leqq \nu \leqq n$, the last expression is, by the second mean-value theorem,

$$
\begin{aligned}
\frac{2}{h} \sin \left(\nu+\frac{1}{2}\right)(t+h) \sin \frac{1}{2}(t+h) \int_{h_{1}}^{h} d u & \left(0<h_{1}<h\right) \\
=\theta_{\nu}\left(\nu+\frac{1}{2}\right)(t+h)^{2}<4\left(\nu+\frac{1}{2}\right) t^{2} & \left(0<\theta_{\nu}<1\right)
\end{aligned}
$$

Hence

$$
\left|\mathrm{S}_{1}\right|<4 \sum_{\nu=0}^{n-1}\left|\mathrm{~S}_{\nu}\right|\left(\nu+\frac{1}{2}\right) t^{2}+\left|\mathrm{S}_{n-1}\right| .
$$

On the other hand, the two conditions (1) and the Abel summability of $\sum a_{n}$ to the sum zero imply $\lim \mathrm{s}_{n}=0$ by the above lemma. So, we may suppose that

$$
\left|\mathrm{s}_{\nu}\right|<K(\nu \geqq 0) \quad \text { and } \quad\left|\mathrm{s}_{\nu}\right|<\varepsilon\left(\nu \geqq n_{0}\right) .
$$

For $n>n_{0}$, then,

$$
\left|\mathrm{S}_{1}\right|<2 K n_{0}^{2} t^{2}+2 \varepsilon n^{2} t^{2}+\varepsilon<2 K n_{0}^{2} t^{2}+3 \varepsilon,
$$

by (8), and this is less than 4ε for $t<(\varepsilon / 2 K)^{1 / 2} / n_{0}$. Next

$$
\left|\mathrm{S}_{2}\right|=\left|\frac{1}{h} \sum_{\nu=n}^{N} a_{\nu} \int_{0}^{h} \cos \nu(t+u) d u\right|<\sum_{\nu=n}^{N}\left|a_{\nu}\right| .
$$

And, since by (8)

$$
N=\left[n^{\rho+2}\right] \leqq n \cdot e^{(\rho+1) \log n}<n \cdot 2^{[2(\rho+1) \log n]},
$$

and assuming that

$$
\begin{equation*}
\sum_{\mu=\nu}^{2 \nu}\left|a_{\mu}\right|<\varepsilon / \log \nu \quad\left(\nu \geqq n_{0}>1\right), \tag{9}
\end{equation*}
$$

which is permissible by (1), we have

$$
\begin{aligned}
\left|S_{2}\right| & <\sum_{k=0}^{[2(\rho+1) \log n]-1} \sum_{\nu=2^{k} k_{n}}^{2^{k+1} n}\left|a_{\nu}\right|<\varepsilon \sum_{k=0}^{[2(\rho+1) \log n]-1} \frac{1}{\log \left(2^{k} n\right)} \\
& \sim \varepsilon \int_{0}^{2(\rho+1) \log n} \frac{d x}{\log \left(2^{x} n\right)}<2 \varepsilon \log (2 \rho+3) .
\end{aligned}
$$

Further,

$$
\begin{aligned}
\left|\mathrm{S}_{3}\right|= & \left|\frac{1}{h} \sum_{\nu=N+1}^{\infty} a_{\nu} \int_{0}^{h} \cos \nu(t+u) d u\right| \\
\leqq & \frac{2}{h} \sum_{\nu=N+1}^{\infty} \frac{\left|a_{\nu}\right|}{\nu} \leqq \frac{2}{h} \sum_{k=0}^{\infty} \sum_{\nu=2^{k_{N}}}^{2^{k+1} N} \frac{\left|\alpha_{\nu}\right|}{\nu} \\
& <\frac{2}{h} \sum_{k=0}^{\infty} \frac{1}{2^{k} N} \sum_{\nu=2^{k_{N}}}^{2^{k+1} N}\left|a_{\nu}\right|,
\end{aligned}
$$

which does not exceed, by (9),

$$
\frac{2}{h} \sum_{k=0}^{\infty} \frac{1}{2^{k} N} \cdot \frac{\varepsilon}{\log \left(2^{k} N\right)}<\frac{4 \varepsilon}{h N \log N}<\frac{4 \varepsilon}{h n^{\rho+2}} \sim 4 \varepsilon t
$$

since $n=[1 / t]$ and $h=t^{\rho+1}$. Combining the above estimations of S's with (7), we have

$$
\lim _{t \rightarrow 0} \frac{1}{h} \int_{0}^{h} \varphi(t+u) d u=0
$$

Similarly,

$$
\lim _{t \rightarrow 0} \frac{1}{h} \int_{0}^{h} \varphi(t-u) d u=0
$$

and we get (6), which completes the proof.
Finally, I wish to express my heartfelt gratitude to Mr. K. Yano for his suggestions and kind advices.

References

[1] G. H. Hardy and J. E. Littlewood: Some new convergence criteria for Fourier series, Annali Scoula Normale Superioure, Pisa, 3, 43-62 (1934).
[2] O. Szász: Convergence properties of Fourier series, Trans. Amer. Math. Soc., 37, 483-500 (1935).
[3] K. Yano: Convexity theorems for Fourier series, J. Math. Soc. Japan (to appear).

