123. On Monotone Solutions of Differential Equations

By Heinrich W. Guggenheimer
(Comm. by K. Kunugi, m.J.A., Nov. 12, 1959)

In a recent note [1], Professor Iséki proved the following theorem, which we will formulate for one single differential equation: If the functions $P(t), Q(t)$ are defined and absolutely integrable on an interval $[a,+\infty)$, then any monotone increasing solution $x(t)$ of

$$
\frac{d x}{d t}=P(t) x+Q(t)
$$

is bounded on that interval.
It is natural to ask whether a similar theorem may hold for an equation

$$
\begin{equation*}
\frac{d x}{d t}=\sum_{m=0}^{n} p_{m}(t) x^{m} \tag{1}
\end{equation*}
$$

with suitable conditions on the coefficients $p_{m}(t)$. It is immediately seen that if the leading coefficient $p_{n}(t)$ is integrable, no similar result can hold, since

$$
\frac{d x}{d t}=\frac{1}{t^{2}} x^{2}
$$

has the unbounded solution $x=t$. So one may try to get the desired result from the opposite condition: $\quad P_{n}(t)$ not integrable on $[a,+\infty)$, since the example

$$
\frac{d x}{d t}=\frac{1}{t} x^{2}
$$

has the monotone solution $x=-(\log t)^{-1}$, bounded by 0 .
It turns out that this special situation is the general one, since we have

Theorem 1. If the functions $p_{m}(t), m=0, \cdots, n$ are defined on an interval $[a,+\infty)$, and if

$$
\int_{a}^{\infty} p_{n}(u) d u=+\infty, \quad p_{n}(t) \geq 0, \quad\left(t \geq T_{0}\right)
$$

ii)

$$
p_{m}(t) \geq 0, \quad 0 \leq m \leq n-1, \quad\left(t \geq T_{0}\right)
$$

then any monotone increasing solution $x(t)$ of (1)
a) either is bounded by zero
b) or $\lim _{t \rightarrow \infty} \frac{x(t)}{\int_{T}^{t} p_{n}(u) d u}=\infty$.

Proof. By hypothesis i), $p_{n}(t)$ is positive for $t>T_{0}$. Now suppose that there is a T (it may be taken $>T_{0}$) with $x(T)>0, x(t)$ being a
monotone increasing solution of (1). From (1) we have by integration

$$
\begin{equation*}
x(t)-x(T)=\int_{T}^{t} x^{n}(u) p_{n}(u) d u+\sum_{m=0}^{n-1} \int_{T}^{t} p_{m}(u) x^{m}(u) d u \tag{2}
\end{equation*}
$$

hence

$$
x^{n}\left(t^{*}\right) \int_{T}^{t} p_{n}(u) d u<x(t) \quad \text { for a } t^{*}, T \leq t^{*} \leq t
$$

or

$$
x^{n}\left(t^{*}\right)<\frac{x(t)}{\int_{T}^{t} p_{n}(u) d u}
$$

From this inequality, both parts of the theorem follow at once.
Theorem 2. If the functions $p_{m}(t), m=0, \cdots, n$ are defined on an interval $[a,+\infty)$, and if
i)

$$
\begin{aligned}
& \left|\int_{a}^{\infty} p_{n}(u) d u\right|=+\infty \\
& \int_{a}^{\infty}\left|p_{n}(u)\right| d u<\infty \quad 0 \leq m \leq n-1
\end{aligned}
$$

ii)
then any monotone increasing solution of (1) is bounded by zero.
As in the proof of Theorem 1, let us suppose $x(T)>0$. Then we have from (2), using the first mean value theorem,

$$
x^{n}\left(t^{*}\right)\left|\int_{T}^{t} p_{n}(u) d u\right| \leq x(t)+x(T)+\sum_{m=0}^{n-1} x^{m}\left(t_{m}\right)\left|\int_{T}^{t} p_{m}(u) d u\right|, \quad T \leq t_{m}<t,
$$

and by the monotonicity, for T big enough to fulfill

$$
\int_{T}^{\infty}\left|p_{m}(u)\right| d u<\varepsilon
$$

we have

$$
\begin{equation*}
x^{n}\left(t^{*}\right)\left|\int_{T}^{t} p_{n}(u) d u\right|<x(t)+x(T)+(n-1) \varepsilon x^{n-1}(t)+\varepsilon . \tag{3}
\end{equation*}
$$

If $x(t)$ is assumed bounded, a contradiction follows at once by hypothesis i). If $x(t)$ is not bounded, then we may assume $x(T) \geq 1$, and (3) gives, dividing by $x^{n-1}(t)\left|\int_{T}^{t} p_{n}(u) d u\right|$,

$$
x(t)<\frac{1+n \varepsilon+x(T)}{\left|\int_{T}^{t} p_{n}(u) d u\right|}
$$

from which a contradiction follows, also by hypothesis i). This completes the proof.

Remark. Defining a vector of functions

$$
x(t)=\left(\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{s}(t)
\end{array}\right), \quad x^{m}(t)=\left(\begin{array}{c}
x_{1}^{m}(t) \\
\vdots \\
x_{s}^{m}(t)
\end{array}\right)
$$

and replacing the functions $p_{n}(t)$ by matrices, the theorem is generalized at once to systems of differential equations.

Reference

[1] K. Iséki: A remark on monotone solutions of differential equations, Proc. Japan Acad., 35, 370-371 (1959).

