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(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1960)

1. Definitions and problem. We denote by HBD(R) the totality
of complex-valued bounded harmonic functions on a Riemann surface
R with finite Dirichlet integrals. We use the following convention.
If R is of null boundary, then the complex number field C is con-
sidered not to be contained in HBD(R), that is, the constant function
is not HBD-function and hence HBD(R) is empty. On the other hand,
if R is of positive boundary, then C is considered to be contained in
HBD(R).

Now consider the set A(R) of all bounded and continuously dif-
ferentiable functions on R with finite Dirichlet integrals. Then there

exists a compact Hausdorff space R containing R as its open dense
subset and any function in A(R) is continuously extended to R. Such
a space R is unique up to a homeomorphism fixing R. The set oR

=R—R is called the ideal boundary of R.
Let {R,}2., be an exhaustion of R with R,=empty set. For each

n, consider the family {F'™} of closed subsets F'™ of R—R, such
that any real-valued continuous function on I?—Rm which belongs to
HBD(R—R,), takes its maximum and minimum on F”. The set

ﬁ n F(?‘L)

n=0{F M}
is empty or the compact subset of 0R. We denote this set by o,R.
Denote by A,(R) the totality of functions in A(R) which vanish on
0.R. Then any function f in A(R) is decomposed into two parts « in
HBD(R) and f—u in A,(R). This decomposition is unique and so we
denote # by =f. Then it holds that

Dlsf, f~rf1= [ [dlaf)n*dF=rF)=0.

Consider the following algebraic operations in HBD(R): for arbitrary
two functions # and v in HBD(R) and for any complex number a, we
define addition, scalar multiplication and multiplication by the fol-
lowing

(u~+)(p)=u(p)+v(p);
(au)(P)=a(u(p));
(u X v)(p)=(z(uv))(D),
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where p is an arbitrary point in R and (uv)(p)=u(p)v(p).
With respect to these operations, HBD(R) is an algebra over C. The
algebra HBD(R) can be normed by
l||=|l%|lo+VDLul,
where ||%|l.=sup (|u(p)|; e R), and HBD(R) becomes a mormed ring.

We consider another topology, which will be called BD-topology
defined by a convergence of sequences, where a sequence {f,} in HBD(R)
is said to converge to 0 if the sequence {||f,||~} is bounded and {f,}
converges to 0 uniformly on any compact subset of K and also {D[f,]}
converges to 0.

H. L. Royden proved in his paper [2] the following interesting

Theorem. If two Riemann surfaces R and R’ are quasiconfor-
mally equivalent,” then HBD(R) and HBD(R') are algebraically iso-
morphic and this isomorphism s homeomorphic with respect to BD-
topology.”

And he raised a question whether the converse of the above holds
or not. Precisely speaking, he raised the following question.

Problem. If two topologically equivalent Riemann sufaces R and
R’ have BD-homeomorphic® and algebraically isomorphic algebras
HBD(R) and HBD(R'), then can we conclude that R and R’ are quasi-
conformally equivalent?

The aim of this note is to give a negative answer to this problem,
that is, there exist two topologically equivalent Riemann surfaces R
and R’ having BD-homeomorphic and algebraically isomorphic algebras
HBD(R) and HBD(R') which are not quasiconformally equivalent.

2. BD-topology in HBD(R). Fix a point p in E. We introduce
B, D-topology in HBD(R). A sequence {u,} in HBD(R) converges to 0
in B,D-topology if the sequence {||u,||.} is bounded and the sequences
{u,(p)} and {D[u,]} converge to 0. First we state

Proposition 1. Take an arbitrary point p in R. Then B,D-
topology coincides with BD-topology in HBD(R).

Proof. It is evident that the convergence in BD-topology implies
the convergence in B,D-topology. Thus we have only to prove that,
if {u,} converges to 0 in B,D-topology, then it converges to 0 in BD-
topology.

Let r be a point in R. We associate a local parameter z with each
r such that 2(r)=0 and the parameter neighborhood of r is sent to
(|z]<2) by 2. We denote by 4(r) and 4,(r) the sets (g¢; |2(¢)|<1) and

1) This means that there exists a quasiconformal mapping of R onto R’ in the
sense of Pfluger-Ahlfors-Mori.

2) By the well-known Gelfand’s theorem, this is also homeomorphic with respect
to the norm || f]|.

3) I.e. homeomorphic with respect to BD-topology.
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(g;12(9)| < 2) respectively. Then we get
| (@) | <], (r) | + kv Dlu,]
for each ¢ in 4(r), where k is a universal constant independent of 4(7).

Let R, be a set of points ¢ in R such that {u,} converges to 0
uniformly on every 4(g). R, is non-void since p belongs to R, by the
the above inequality. By the same reason, K, is open and closed.
Hence R=R,, or {u,} converges to 0 in BD-topology.

3. Unicity of the multiplicative structure. We denote by HB(R)
the vector space of all complex-valued bounded harmonic functions on
R. Here we consider that C is contained in HB(R). If we use the
term “wector subspace” X of HB(R), we consider only the vector sub-
space X of HB(R) such that X contains C and any % belongs to X if
% is in X, where %(p)=u(p) at every point p in R.

By a “multiplicative structure” in X, we mean that a commutative
multiplication 4 ®v, satisfying

lu@ulle=]lwll
is defined in X and X becomes a normed algebra. Now we can prove

Lemma. There exists at most one multiplicative structure in any
vector subspace X of HB(R).

Proof. Suppose that there exist two multiplicative structures
which are defined by the multiplications # ®,v and % ®,v, respectively.
We denote these multiplicative structures by X; and X,. Note that
X=X,=X, as the set. Without loss of generality, we may assume
that X (and hence X, and X,) is closed under the norm || f||.. Hence
we may consider X, to be the totality C(X*) of complex-valued con-
tinuous functions on a compact Hausdorff space X.* by the Gelfand’s
representation theorem of a normed ring. We denote by u, the element
u belonging to X considered in X,. Then u;—u, gives an isometric
linear isomorphism of X, onto X;. Hence, by the theorem of Stone [3],
u,—u, is accomplished by an algebraic isomorphism of X, onto X,
followed by a multiplication of a fixed function in X, with the modulus
1 at every point of X,. But the constant function 1 in X, is sent to
1 in X,, u,—>u, itself is an algebraic isomorphism, Thus % ©®,v=u@®.v
for every pair of v and v in X. This completes the proof.

Now suppose that R¢O,. Then HBD(R) is a vector subspace of
HB(R) in our sense. Hence we can conclude that

uXv 18 a unique multiplicative structure in HBD(R).
From this, we get the following

Proposition 2. If a linear isomorphism ¢ of HBD(R) onto
HBD(R') possesses the property that c¢°=c for all ¢ in C and ||u’||.
=||%]||«s then o is an algebraic isomorphism of HBD(R) onto HBD(R').

4. Counter-example. Consider a Riemann surface R. If there
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exists a surface R’ containing R as its subsurface and any HBD-func-
tion # defined on R can be extended to R’ so as to belong to the class
HBD no R’. Then we say that R’ is an HBD-continuation of R. If
there exists no HBD-continuation of R except itself, we say that R is
HBD-maximal.

For an arbitrary surface B not belonging to the class O, there
always exists by Zorn’s lemma an HBD-continuation of R which is
HBD-maximal. We denote it by R*. Let u*c HBD(R*) be the con-
tinuation of ue HBD(R) to R*. Then ¢:u—u* gives a linear isomor-
phism of HBD(R) onto HBD(R*) which preserves C. Moreover, it
holds that ||u||.=]||u*||. and Dz[u]=Dp[u*]. From these and from
Propositions 1 and 2, we get

Proposition 3. HBD(R) and HBD(R*) are BD-homeomorphically
and algebraically <isomorphic.

Example. Let R be (|z]<1). We put R,=R—{1/n}>.,~{0} and
R,=R—{1—1/n}>.,~{0} respectively. These surfaces E; and R, are
topologically equivalent. Now we put R}=R (¢=1,2). Then the re-
lation between R, and R} (i=1,2) is the same as mentioned above.
Hence we see that HBD(R,) and HBD(R;) are BD-homeomorphically
and algebraically isomorphic. Assume that R, and R, are quasiconfor-
mally equivalent. Let ¢ be a quasiconformal mapping of R, onto R,.
Since one point is deletable with respeet to ¢, ¢ is extended to a quasi-
conformal mapping of R onto itself such that ¢(R—R,)=R—R,. The
set R— R, has a non-isolated point in R and R— R, has no non-isolated
point in R. This is a contradiction. Thus this pair (R,, E,) of Riemann
surfaces gives a negative solution to the problem of Royden stated in
section 1.

Remarks. 1. In spite of the fact that the surfaces R, and R,
mentioned above have BD-homeomorphic and algebraically isomorphie
HBD-algebras, R, and R, are not quasiconformally equivalent. This
comes from the fact that R, and R, are not HBD-maximal. Hence
the problem of Royden must be confined with HBD-maximal surfaces.

2. Let R and R’ be topologically equivalent. It is also an in-
teresting question to settle whether HBD(R) and HBD(R') are iso-
morphic as algebra or not under the condition that HBD(R) and
HBD(R') are isomorphic as vector space or furthermore homeomorphic
with respect to the Dirichlet semi-norm (and so with respect to the
HBD-norm).

3. It is known that two Riemann surfaces R and R’ are quasi-
conformally equivalent if and only if A(R) and A(R') are algebrai-
cally isomorphic (cf. [1]). By the similar method as used in [1], we
can prove that R and R’ are quasiconformally equivalent if and only
if Ay(R) and A;(R') are algebraically tsomorphic.
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As the algebra HBD(R) is the factor algebra A(R)/A,(R), the above
example shows that A(R)/A,(R)== A(R')/A,(R’) (algebraically isomorphic)
does not imply A(R)=~ A(R’) and A,(R)=A,(R’) even if R and R’ are
topologically equivalent.
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