6. On Some Properties of Group Characters

By Masaru OSIMA

Department of Mathematics, Okayama University (Comm. by K. SHODA, M.J.A., Jan. 12, 1960)

Let \mathfrak{G} be a group of finite order and let p be a fixed prime number. An element is called a p-element of \mathfrak{G} if its order is a power of p. An arbitrary element G of \mathfrak{G} can be written uniquely as a product PR of two commutative elements where P is a p-element, while R is a pregular element, i.e. an element whose order is prime to p. We shall call P the p-factor of G and R the p-regular factor of G. We define the section $\mathfrak{S}(P)$ of a p-element P as the set of all elements of \mathfrak{G} whose p-factor is conjugate to P in \mathfrak{G} . Let \mathfrak{R}_{ν} be a class of conjugate elements which contains an element whose p-factor is P. Then $\mathfrak{S}(P)$ is the union of these classes \mathfrak{R}_{ν} . Let $P_1=1, P_2, \dots, P_h$ be a system of p-elements such that they all lie in different classes of conjugate elements, but that every p-element is conjugate to one of them. Then all elements of \mathfrak{G} are distributed into h sections $\mathfrak{S}(P_i)$.

We consider the representations of \mathfrak{G} in the field of all complex numbers. Let $\chi_1, \chi_2, \dots, \chi_n$ be the distinct irreducible characters of \mathfrak{G} . Then the χ_i are distributed into a certain number of blocks B_1, B_2, \dots, B_i . We denote by \overline{a} the conjugate of a complex number a. Then $\overline{\chi}_i(G) = \chi_i(G^{-1})$. In [1] the following theorem has been stated without proof:

Let B be a block of \mathfrak{G} . If the elements G and H of \mathfrak{G} belong to different sections of \mathfrak{G} , then

(1) $\sum \chi_i(G)\overline{\chi}_i(H)=0$

where the sum extends over all $\chi_i \in B$.

Recently the proof of this theorem was given in [2]. In this note, corresponding to the above theorem, we shall prove the following

Theorem 1. Let $\mathfrak{S}(P)$ be a section of \mathfrak{G} . If the characters χ_i and χ_j belong to different blocks, then

$$\sum' \chi_i(G) \overline{\chi}_j(G) = 0$$

where the sum extends over all $G \in \mathfrak{S}(P)$.

As a consequence of Theorem 1, some new results are also obtained.

1. Let \Re_{ν} ($\nu=1, 2, \dots, n$) be the classes of conjugate elements in \mathfrak{G} and let G_{ν} be a representative of \Re_{ν} . We shall first prove the following

Lemma. If $\sum_{\nu=1}^{n} a_{\nu}\chi_{i}(G_{\nu}) = 0$ for all $\chi_{i} \in B$, then $\sum_{\alpha}' a_{\alpha}\chi_{i}(G_{\alpha}) = 0$ where the sum extends over all $\Re_{\alpha} \in \mathfrak{S}(P)$.

Proof. Let \Re_{β} be a class belonging to $\mathfrak{S}(P)$. We multiply by

 $\overline{\chi}_i(G_{\beta})$ and add over all $\chi_i \in B$. Using (1), we find $\sum_{\alpha}' a_{\alpha} \sum_{\chi_i \in B} \chi_i(G_{\alpha}) \overline{\chi}_i(G_{\beta}) = 0.$

Here we multiply by \overline{a}_{β} and add over all $\Re_{\beta} \in \mathfrak{S}(P)$. Then

$$\sum_{\alpha_i\in B}|\sum_{\alpha'}\alpha_{\alpha}\chi_i(G_{\alpha})|^2=0$$

Hence we have for all $\chi_i \in B$

$$\sum_{\alpha}' a_{\alpha} \chi_i(G_{\alpha}) = 0.$$

Denote by g_{ν} the number of elements in \Re_{ν} . As is well known, we have the following character relations:

$$(2) \qquad \qquad \sum_{\nu} g_{\nu} \chi_i(G_{\nu}) \overline{\chi}_j(G_{\nu}) = 0 \qquad (i \neq j),$$

and hence (2) is also valid for all $\chi_i \in B$ if $\chi_j \notin B$. As an application of Lemma, we obtain from (2) immediately

$$\sum_{\alpha}' g_{\alpha} \chi_i(G_{\alpha}) \overline{\chi}_j(G_{\alpha}) = 0 \qquad (\chi_i \text{ and } \chi_j \text{ in different blocks}).$$

Hence Theorem 1 is proved.

Since the section $\mathfrak{S}(1)$ consists of all *p*-regular elements of \mathfrak{S} , it follows from Theorem 1 that

(3) $\sum_{R} \chi_i(R) \overline{\chi}_j(R) = 0 \quad (\chi_i \text{ and } \chi_j \text{ in different blocks})$

where R ranges over all p-regular elements of (G). The relations (3) have been obtained in [4] by a different method. We may assume that the 1-character χ_1 belongs to B_1 . If we set $\chi_j = \chi_1$ in Theorem 1, then we have

(4)
$$\sum' \chi_i(G) = 0$$
 (for $\chi_i \notin B_1$)
where the sum extends over all $G \in \mathfrak{S}(P)$. In particular,
(5) $\sum_{i=1}^{n} \chi_i(R) = 0$ (for $\chi_i \notin B_1$).

Theorem 2. A character χ_i belongs to the first block B_1 if and only if $\sum_{n} \chi_i(R) \neq 0$.

Proof. For every
$$\chi_i \in B_1$$
 we have, as was shown in [3] $\sum_R \chi_i(R) \overline{\chi}_1(R) = \sum_R \chi_i(R) \neq 0.$

This, combined with (5), proves Theorem 2.

Let $\varphi_1, \varphi_2, \dots, \varphi_m$ be the distinct modular irreducible characters of \mathfrak{G} (for p). Then the φ_s are also distributed into t blocks B_r . If φ_s belongs to a block B, then $\varphi_s(R)$ can be written as a linear combination of $\chi_j(R) \in B$. It follows from (3) that

(6) $\sum_{R} \overline{\varphi}_{\epsilon}(R)\chi_{i}(R) = 0$ (φ_{ϵ} and χ_{i} in different blocks). In particular, for i=1, we have (7) $\sum_{R} \alpha(R) = 0$ (for $\alpha \in R$)

(7)
$$\sum_{R} \varphi_{\kappa}(R) = 0 \qquad (\text{for } \varphi_{\kappa} \in B_{1}).$$

Denote by $\Gamma(\mathfrak{G})$ the group ring of \mathfrak{G} over the field of all complex numbers and by 3 the center of the group ring. Let K_{*} be the sum

19

No. 1]

M. OSIMA

of all elements in \Re_{ν} . Every character χ_i determines a character ω_i of 3 which is given by $\omega_i(K_{\nu}) = g_{\nu}\chi_i(G_{\nu})/z_i$ where $z_i = \chi_i(1)$. We may assume that $\Re_1, \Re_2, \dots, \Re_s$ are the classes belonging to $\mathfrak{S}(1)$, i.e. the *p*-regular classes. It follows from (6) that

(8)
$$\sum_{\alpha=1}^{s} \overline{\varphi}_{\alpha}(R_{\alpha}) \omega_{i}(K_{\alpha}) = 0 \qquad (\varphi_{\alpha} \text{ and } \chi_{i} \text{ in different blocks}).$$

2. If P is an element of \mathfrak{G} whose order is $p^{\alpha} \geq 1$ and if R is a p-regular element of the normalizer $\mathfrak{N}(P)$ of P, then we have

(9)
$$\chi_i(PR) = \sum d_{i_k}^P \varphi_k^P(R)$$

where the φ_{ϵ}^{P} are the modular irreducible characters of $\mathfrak{N}(P)$ and where the $d_{i\epsilon}^{p}$ are algebraic integers of the field of the p^{α} th roots of unity. As was shown in [2], if we consider only χ_{i} belonging to a fixed block B_{τ} of \mathfrak{G} , then only characters φ_{ϵ}^{P} have to be taken which belong to a well-determined set of blocks B_{σ}^{P} of $\mathfrak{N}(P)$. We shall say that B_{τ} is the block of \mathfrak{G} determined by blocks B_{σ}^{P} of $\mathfrak{N}(P)$. Every block B_{σ}^{P} of $\mathfrak{N}(P)$ determines uniquely a block of \mathfrak{G} .

Originally, only the ordinary characters χ_i of \mathfrak{G} and the modular characters $\varphi_{\mathfrak{x}}$ of \mathfrak{G} were distributed into blocks $B_{\mathfrak{x}}$. It is now natural to count $\varphi_{\mathfrak{x}}^P$ as a character of $B_{\mathfrak{x}}$, if $\varphi_{\mathfrak{x}}^P$ belongs to a block $B_{\mathfrak{x}}^P$ of $\mathfrak{N}(P)$ which determines $B_{\mathfrak{x}}$. Denote by $x_{\mathfrak{x}}$ the number of $\chi_i \in B_{\mathfrak{x}}$ and by $y_{\mathfrak{x}}$ the number of $\varphi_{\mathfrak{x}} \in B_{\mathfrak{x}}$. Then $B_{\mathfrak{x}}$ consists of $x_{\mathfrak{x}}$ ordinary characters and $x_{\mathfrak{x}}$ modular characters $\varphi_{\mathfrak{x}}^{Pi}$. $B_{\mathfrak{x}}$ contains $y_{\mathfrak{x}}$ modular characters $\varphi_{\mathfrak{x}}$ of \mathfrak{G} and the other $\varphi_{\mathfrak{x}}^{Pi}$ are the modular characters of the normalizers $\mathfrak{N}(P_i)$.

Let R_1, R_2, \dots, R_l be a complete system of representatives for the *p*-regular classes of $\mathfrak{N}(P)$. Then the section $\mathfrak{S}(P)$ consists of *l* classes of conjugate elements and a complete system of representatives for these classes is given by PR_{α} ($\alpha=1, 2, \dots, l$). In the following we denote by \mathfrak{R}^P_{α} the class of \mathfrak{G} which contains PR_{α} and by K^P_{α} the sum of all elements in \mathfrak{R}^P_{α} .

Theorem 3. If χ_i and φ_s^P belong to different blocks, then

$$\sum_{\alpha=1}^{\ell} g_{\alpha}^{P} \overline{\varphi}_{s}^{P}(R_{\alpha}) \chi_{i}(PR_{\alpha}) = 0$$

where g^{P}_{α} denotes the number of elements in \Re^{P}_{α} .

Proof. If φ_{ϵ}^{P} belongs to a block *B*, then we see from (9) that $\varphi_{\epsilon}^{P}(R_{\alpha})$ can be written as a linear combination of $\chi_{i}(PR_{\alpha})$ where $\chi_{i} \in B$. Hence Theorem 3 follows from Theorem 1 immediately.

Evidently Theorem 3 is a generalization of (6). We have from Theorem 3

(10)
$$\sum_{\alpha=1}^{i} \overline{\varphi}_{\epsilon}^{P}(R_{\alpha}) \omega_{i}(K_{\alpha}^{P}) = 0 \qquad (\chi_{i} \text{ and } \varphi_{\epsilon}^{P} \text{ in different blocks}).$$

Denote by \mathfrak{Z}^* the center of the modular group ring $\Gamma^*(\mathfrak{G})$ of \mathfrak{G} . Then \mathfrak{Z}^* splits into a direct sum of t indecomposable ideals \mathfrak{Z}^*_r . Let \mathfrak{Z}^*_r be the ideal corresponding to a block B_r . Let $\zeta_1, \zeta_2, \cdots, \zeta_m$ be the modular irreducible characters of (\mathfrak{G}) in the original sense, that is, $\zeta_{\mathfrak{c}}(R)$ be the residue class of $\varphi_{\mathfrak{c}}(R) \pmod{\mathfrak{p}}$ where \mathfrak{p} denotes a suitable prime ideal divisor of p. If we set

(11)
$$C_{\epsilon}^{P} = \sum_{\alpha=1}^{l} \zeta_{\epsilon}^{P}(R_{\alpha}^{-1}) K_{\alpha}^{P},$$

then (10) implies that $C_{\epsilon}^{P} \in \mathfrak{Z}_{\tau}^{*}$ if and only if φ_{ϵ}^{P} belongs to B_{τ} . Since $|\varphi_{\epsilon}^{P}(R_{\alpha})| \neq 0 \pmod{\mathfrak{p}}$ for every P, we see that the C_{ϵ}^{P} form a basis of \mathfrak{Z}^{*} and moreover the C_{ϵ}^{P} with $\varphi_{\epsilon}^{P} \in B_{\tau}$ form a basis of \mathfrak{Z}_{τ}^{*} .

Added in Proof. Professor R. Brauer communicated to me that he had also obtained Theorem 1 by a different method.

References

- R. Brauer: On blocks of characters of groups of finite order. II, Proc. Nat. Acad. Sci. U. S. A., 32, 215-219 (1946).
- [2] R. Brauer: Zur Darstellungstheorie der Gruppen endlicher Ordnung. II, Math. Zeitschr., 72, 25-46 (1959).
- [3] R. Brauer and W. Feit: On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. U. S. A., 45, 361-365 (1959).
- [4] R. Brauer and C. Nesbitt: On the modular characters of groups, Ann. of Math., 42, 556-590 (1941).

No. 1]