6. On Some Properties of Group Characters

By Masaru Osima
Department of Mathematics, Okayama University
(Comm. by K. Shoda, M.J.A., Jan. 12, 1960)

Let ${ }^{5}$ be a group of finite order and let p be a fixed prime number. An element is called a p-element of \mathscr{E} if its order is a power of p. An arbitrary element G of \mathscr{S} can be written uniquely as a product $P R$ of two commutative elements where P is a p-element, while R is a p regular element, i.e. an element whose order is prime to p. We shall call P the p-factor of G and R the p-regular factor of G. We define the section $\mathbb{S}(P)$ of a p-element P as the set of all elements of $\mathscr{S H}^{5}$ whose p-factor is conjugate to P in $\mathscr{S H}^{2}$. Let \mathscr{R}_{ν} be a class of conjugate elements which contains an element whose p-factor is P. Then $\mathbb{S}(P)$ is the union of these classes \mathscr{R}_{ν}. Let $P_{1}=1, P_{2}, \cdots, P_{h}$ be a system of p-elements such that they all lie in different classes of conjugate elements, but that every p-element is conjugate to one of them. Then all elements of \mathscr{S}^{5} are distributed into h sections $\mathbb{S}\left(P_{i}\right)$.

We consider the representations of $(\mathscr{S}$ in the field of all complex numbers. Let $\chi_{1}, \chi_{2}, \cdots, \chi_{n}$ be the distinct irreducible characters of $(\mathbb{B}$. Then the χ_{i} are distributed into a certain number of blocks $B_{1}, B_{2}, \cdots, B_{t}$. We denote by \bar{a} the conjugate of a complex number a. Then $\bar{\chi}_{i}(G)$ $=\chi_{i}\left(G^{-1}\right)$. In [1] the following theorem has been stated without proof:

Let B be a block of (5). If the elements G and H of $\mathscr{S H}^{(5)}$ belong to different sections of $(\mathbb{S}$, then

$$
\begin{equation*}
\sum \chi_{i}(G) \bar{\chi}_{i}(H)=0 \tag{1}
\end{equation*}
$$

where the sum extends over all $\chi_{i} \in B$.
Recently the proof of this theorem was given in [2]. In this note, corresponding to the above theorem, we shall prove the following

Theorem 1. Let $\mathbb{S}(P)$ be a section of (5. If the characters χ_{i} and χ_{j} belong to different blocks, then

$$
\sum^{\prime} \chi_{i}(G) \bar{\chi}_{j}(G)=0
$$

where the sum extends over all $G \in \mathbb{S}(P)$.
As a consequence of Theorem 1, some new results are also obtained.

1. Let $\Omega_{\nu}(\nu=1,2, \cdots, n)$ be the classes of conjugate elements in \mathscr{S}° and let G_{ν} be a representative of \mathscr{R}_{ν}. We shall first prove the following

Lemma. If $\sum_{\nu=1}^{n} a_{\nu} \chi_{i}\left(G_{\nu}\right)=0$ for all $\chi_{i} \in B$, then $\sum_{\alpha}^{\prime} a_{\alpha} \chi_{i}\left(G_{\alpha}\right)=0$ where the sum extends over all $\AA_{\alpha} \in \mathbb{S}(P)$.

Proof. Let \mathfrak{R}_{β} be a class belonging to $\mathfrak{S}(P)$. We multiply by
$\bar{\chi}_{i}\left(G_{\beta}\right)$ and add over all $\chi_{i} \in B$. Using (1), we find

$$
\sum_{\alpha}^{\prime} a_{\alpha} \sum_{\chi_{i} \in B} \chi_{i}\left(G_{\alpha}\right) \bar{\chi}_{i}\left(G_{\beta}\right)=0
$$

Here we multiply by \bar{a}_{β} and add over all $\mathscr{\Omega}_{\beta} \in \subseteq(P)$. Then

$$
\sum_{x_{i} \in B}\left|\sum_{\alpha}^{\prime} \alpha_{\alpha} \chi_{i}\left(G_{\alpha}\right)\right|^{2}=0
$$

Hence we have for all $\chi_{i} \in B$

$$
\sum_{\alpha}^{\prime} a_{\alpha} \chi_{i}\left(G_{\alpha}\right)=0
$$

Denote by g_{ν} the number of elements in \mathscr{R}_{ν}. As is well known, we have the following character relations:

$$
\begin{equation*}
\sum_{\nu} g_{\nu} \chi_{i}\left(G_{\nu}\right) \bar{\chi}_{j}\left(G_{\nu}\right)=0 \quad(i \neq j) \tag{2}
\end{equation*}
$$

and hence (2) is also valid for all $\chi_{i} \in B$ if $\chi_{j} \notin B$. As an application of Lemma, we obtain from (2) immediately

$$
\sum_{\alpha}^{\prime} g_{\alpha} \chi_{i}\left(G_{\alpha}\right) \bar{\chi}_{j}\left(G_{\alpha}\right)=0 \quad\left(\chi_{i} \text { and } \chi_{j} \text { in different blocks }\right)
$$

Hence Theorem 1 is proved.
Since the section $\mathbb{S}(1)$ consists of all p-regular elements of \mathbb{G}, it follows from Theorem 1 that

$$
\begin{equation*}
\sum_{R} \chi_{i}(R) \bar{\chi}_{j}(R)=0 \quad\left(\chi_{i} \text { and } \chi_{j} \text { in different blocks }\right) \tag{3}
\end{equation*}
$$

where R ranges over all p-regular elements of \mathscr{F}_{5}. The relations (3) have been obtained in [4] by a different method. We may assume that the 1-character χ_{1} belongs to B_{1}. If we set $\chi_{j}=\chi_{1}$ in Theorem 1, then we have

$$
\begin{equation*}
\sum^{\prime} \chi_{i}(G)=0 \quad\left(\text { for } \chi_{i} \notin B_{1}\right) \tag{4}
\end{equation*}
$$

where the sum extends over all $G \in \mathbb{S}(P)$. In particular,

$$
\begin{equation*}
\sum_{R} \chi_{i}(R)=0 \quad\left(\text { for } \chi_{i} \notin B_{1}\right) \tag{5}
\end{equation*}
$$

Theorem 2. A character χ_{i} belongs to the first block B_{1} if and only if $\sum_{R} \chi_{i}(R) \neq 0$.

Proof. For every $\chi_{i} \in B_{1}$ we have, as was shown in [3]

$$
\sum_{R} \chi_{i}(R) \bar{\chi}_{1}(R)=\sum_{R} \chi_{i}(R) \neq 0 .
$$

This, combined with (5), proves Theorem 2.
Let $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{m}$ be the distinct modular irreducible characters of \mathscr{F} (for p). Then the φ_{κ} are also distributed into t blocks B_{τ}. If φ_{k} belongs to a block B, then $\varphi_{s}(R)$ can be written as a linear combination of $\chi_{j}(R) \in B$. It follows from (3) that

$$
\begin{equation*}
\sum_{R} \bar{\varphi}_{\kappa}(R) \chi_{i}(R)=0 \quad\left(\varphi_{k} \text { and } \chi_{i}\right. \text { in different blocks). } \tag{6}
\end{equation*}
$$

In particular, for $i=1$, we have

$$
\begin{equation*}
\sum_{R} \varphi_{x}(R)=0 \quad\left(\text { for } \varphi_{k} \notin B_{1}\right) \tag{7}
\end{equation*}
$$

Denote by $\Gamma(\mathscr{S})$ the group ring of $\mathscr{5}$ over the field of all complex numbers and by 3 the center of the group ring. Let K_{ν} be the sum
of all elements in $\mathscr{\Omega}_{\nu}$. Every character χ_{i} determines a character ω_{i} of 3 which is given by $\omega_{i}\left(K_{\nu}\right)=g_{\nu} \chi_{i}\left(G_{\nu}\right) / z_{i}$ where $z_{i}=\chi_{i}(1)$. We may assume that $\mathscr{R}_{1}, \mathscr{R}_{2}, \cdots, \mathscr{R}_{s}$ are the classes belonging to $\mathbb{S}(1)$, i.e. the p-regular classes. It follows from (6) that

$$
\begin{equation*}
\sum_{\alpha=1}^{s} \bar{\varphi}_{\kappa}\left(R_{\alpha}\right) \omega_{i}\left(K_{\alpha}\right)=0 \quad\left(\varphi_{\kappa} \text { and } \chi_{i}\right. \text { in different blocks) } \tag{8}
\end{equation*}
$$

2. If P is an element of $\left(\mathscr{S}\right.$ whose order is $p^{\alpha} \geqq 1$ and if R is a p-regular element of the normalizer $\mathfrak{R}(P)$ of P, then we have

$$
\begin{equation*}
\chi_{i}(P R)=\sum_{\kappa} d_{i \kappa}^{P} \varphi_{k}^{P}(R) \tag{9}
\end{equation*}
$$

where the φ_{k}^{P} are the modular irreducible characters of $\mathfrak{R}(P)$ and where the $d_{i k}^{P}$ are algebraic integers of the field of the p^{α} th roots of unity. As was shown in [2], if we consider only χ_{i} belonging to a fixed block B_{τ} of (5), then only characters φ_{x}^{P} have to be taken which belong to a well-determined set of blocks B_{σ}^{P} of $\Re(P)$. We shall say that B_{τ} is the block of \mathscr{S}^{5} determined by blocks B_{σ}^{P} of $\mathfrak{N}(P)$. Every block B_{σ}^{P} of $\mathfrak{N}(P)$ determines uniquely a block of $\mathscr{C S}^{5}$.

Originally, only the ordinary characters χ_{i} of \mathscr{E} and the modular characters φ_{κ} of (5 were distributed into blocks B_{τ}. It is now natural to count φ_{x}^{P} as a character of B_{r}, if φ_{k}^{P} belongs to a block B_{σ}^{P} of $\mathfrak{R}(P)$ which determines B_{τ}. Denote by x_{τ} the number of $\chi_{i} \in B_{\tau}$ and by y_{τ} the number of $\varphi_{\kappa} \in B_{\tau}$. Then B_{τ} consists of x_{τ} ordinary characters and x_{τ} modular characters $\varphi_{k}^{P_{i}} . \quad B_{\tau}$ contains y_{τ} modular characters φ_{k} of ((5) and the other $\varphi_{k}^{P_{i}}$ are the modular characters of the normalizers $\Re\left(P_{i}\right)$.

Let $R_{1}, R_{2}, \cdots, R_{l}$ be a complete system of representatives for the p-regular classes of $\Re(P)$. Then the section $\subseteq(P)$ consists of l classes of conjugate elements and a complete system of representatives for these classes is given by $P R_{\alpha}(\alpha=1,2, \cdots, l)$. In the following we denote by \Re_{α}^{P} the class of \mathscr{S} which contains $P R_{\alpha}$ and by K_{α}^{P} the sum of all elements in \AA_{α}^{P}.

Theorem 3. If χ_{i} and φ_{k}^{P} belong to different blocks, then

$$
\sum_{\alpha=1}^{l} g_{\alpha}^{P} \bar{\varphi}_{k}^{P}\left(R_{\alpha}\right) \chi_{i}\left(P R_{\alpha}\right)=0
$$

where g_{α}^{P} denotes the number of elements in \Re_{α}^{P}.
Proof. If φ_{k}^{P} belongs to a block B, then we see from (9) that $\varphi_{k}^{P}\left(R_{\alpha}\right)$ can be written as a linear combination of $\chi_{i}\left(P R_{\alpha}\right)$ where $\chi_{i} \in B$. Hence Theorem 3 follows from Theorem 1 immediately.

Evidently Theorem 3 is a generalization of (6). We have from Theorem 3

$$
\begin{equation*}
\sum_{\alpha=1}^{l} \bar{\varphi}_{k}^{P}\left(R_{\alpha}\right) \omega_{i}\left(K_{\alpha}^{P}\right)=0 \quad\left(\chi_{i} \text { and } \varphi_{k}^{P} \text { in different blocks }\right) \tag{10}
\end{equation*}
$$

Denote by 3^{*} the center of the modular group ring $\Gamma^{*}(\mathscr{S})$ of \mathscr{S}. Then 3^{*} splits into a direct sum of t indecomposable ideals 3_{τ}^{*}. Let 3_{*}^{*} be the ideal corresponding to a block B_{τ}. Let $\zeta_{1}, \zeta_{2}, \cdots, \zeta_{m}$ be the
modular irreducible characters of \mathscr{F} in the original sense, that is, $\zeta_{\kappa}(R)$ be the residue class of $\varphi_{k}(R)(\bmod \mathfrak{p})$ where \mathfrak{p} denotes a suitable prime ideal divisor of p. If we set

$$
\begin{equation*}
C_{k}^{P}=\sum_{\alpha=1}^{l} \zeta_{k}^{P}\left(R_{\alpha}^{-1}\right) K_{\alpha}^{P} \tag{11}
\end{equation*}
$$

then (10) implies that $C_{k}^{P} \in \mathcal{S}_{\tau}^{*}$ if and only if φ_{k}^{P} belongs to B_{τ}. Since $\left|\varphi_{\kappa}^{P}\left(R_{\alpha}\right)\right| \equiv 0(\bmod \mathfrak{p})$ for every P, we see that the C_{κ}^{P} form a basis of 3^{*} and moreover the C_{k}^{P} with $\varphi_{k}^{P} \in B_{\tau}$ form a basis of \mathcal{S}_{τ}^{*}.

Added in Proof. Professor R. Brauer communicated to me that he had also obtained Theorem 1 by a different method.

References

[1] R. Brauer: On blocks of characters of groups of finite order. II, Proc. Nat. Acad. Sci. U. S. A., 32, 215-219 (1946).
[2] R. Brauer: Zur Darstellungstheorie der Gruppen endlicher Ordnung. II, Math. Zeitschr., 72, 25-46 (1959).
[3] R. Brauer and W. Feit: On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. U. S. A., 45, 361-365 (1959).
[4] R. Brauer and C. Nesbitt: On the modular characters of groups, Ann. of Math., 42, 556-590 (1941).

