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A Note on (E.R.)integral and Fourier Series

By Teruo IKEGAMI
(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1960)

1. Introduction and notations. In this note we shall consider
(E.R.)integral of rather special type.) Let be the set of all step
functions defined on the finite closed interval a, b. In we shall
introduce a topology and a rank so that becomes a ranked space.
Let F be the closed set in a, b, , be an integer and f be a function
in , then we shall define a neighbourhood of f, V(F, ; f) as the set
of all functions gC such that there exist in functions p(x)and
r(x)’g(x)--f(x)-p(x)-r(x) which satisfy the following conditions:

1 r(x) is zero for all in F,

2 we have IP(x) ldx<2-,

[ 31 for every c, d" acdb we have r(x)dx 2-.

A neighbourhood V(F, ; f) is called of rank , if we have mes {a, b
--F}<2-. A sequence of neighbourhoods {u}--{V(Fn, ";fn)} is called
fundamental sequence, if we have

(1) UoU’’’Un’’’, the rank of u is ,,
(2) ,0 ’",
(3) n-O, 2,...

Further we shall add the conditions:
(1") the sequence {u} has the property P, that is, there exists

a function (n)(n-0,1,2,...) such that (n)>0 for n-0,1,2,...,
lim (n)-0, and for every measurable set E contained in a, bJ whose

measure is less than mes{a, b--F}, we have

(1.1) f
1) The investigation of (E.R.)integral originates from the note of Prof. K. Kunugi"

Application de la mdthode des espaces rangds la thdorie de l’intgration. I, Proc.
Japan Acad., 32, 215-220 (1956). In original note the condition [31j is weaker than
the present one, that is,

3J we have r(x)dx <2-.
While the condition [31] was first considered by Dr. S. Nakanishi" Sur la ddrivation de
l’intdgrale (E.R.)inddfinie. I, Proc. Japan Acad., 34, 199-204 (1958), which makes the
indefinite integral continuous.

In this present note we owe also the note of Prof. K. Kunugi" Sur une ggnelralisa-
tion de l’intdgrale, Fundamental and Applied Aspects of Mathematics, 1-30, Research
Institute of Applied Electricity, Hokkaido University.



No. 2J A Note on (E.R.)integral and Fourier Series 73

(2*) there exists an integer (>2) which satisfies for every n
the inequality:

.mes [a, b]--F+l}>mes {a, b]--Fn}.
In the following, we shall consider mainly the fundamental sequences

which satisfy the conditions (1"), (2").) For such sequence the limits

lim fn(X), lim x)dx

exist (the former limit exists except the set of measure zero and the
latter exists for all c, d) and the limit of integrals depends only on the
limit function. This function is culled (E.R.)integrable and this funda-
mental sequence is called a defining sequence of this function. Thus
we can define for axb

F(x)-- lim f(t)dt,

this is expressed by (E.R.) f()dx, where f()- limf(x). It is

known that F(x) is continuous.
2. Next we shall enter one of the main results of this note.

Before proving the theorem we describe auxiliary articles.
Lemma. If f(x) is (E.R.)integrable in a, b and Lebesgue inte-

grable in [c, d (ac<db), then there exists fundamental sequence
{V(F, ,; f)} and we have

lim fn(x)--f(x) for almost all x,

lim f(x)-f(x)ldx-O.

In the following we employ ourselves in the study on Fejr kernel
and Poissn kernel, nevertheless we state the theorem for kernels of
more abstract character. In this apparently infructuous generalizution
we intend to make the type of proof clear and not to repeat the details
of proof for other kernels, for example, kernels K(x), 0<r<l.4)

We shall consider functions K(x) (n--1, 2,...) satisfying the follow-
ing conditions and call them kernels.

1 ) K(x) is an absolutely continuous periodic function with period
2 and K(--x)--K(x).

fK xo)dx 2z.2 for every x0 we have (x--

3) Ign(x) ldxC, where C denotes a constant independent

of n.

2) Unless otherwise-st-at--e-,we sall-us-th--e-in00g-y--’-i fur]danena-l-eqkunnc-e-;’
in this sense.

3) Cf. S. Nakanishi" Loc. cit. p. 201.
4) For this kernel, cf. A. Zygmund" Trigonometrical Series, 42, 48, Warsaw

(1935).
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4 ) for every 20 we have limA,(2)-0, where A(,)--MaxiKn(x)!
for x,.

5) for every 20 there exists M() and we have for all n, B.()
M(2), where B(2) denotes the absolute variation of Kn(x)on 2, z.

By 2), 3), 4) our kernels are quasi-positive.
Theorem 1. Let f(x) be (E.R.)integrable on --, and at Xo

there exist finite limits f(xo--), f(Xo+), then for every n the function
f(x).K(x) is also (E.R.)integrable and we have

1 1/2 (E.R.) f f(x)K (X-Xo)4X- [f(Xo+)+ f(0--)/2.
Proof. Without loss of generality, we may suppose that x0-0,

and f(x) is continuous at x-0, for otherwise we may define anew
f(x)-f(x)+f(--x)/2 and f(O)-f(O+)+f(O--)/2; {f(x)-- f(O)}K(x)
is (E.R.)integrable and there exists a fundamental sequence {V(F,
,; )} satisfying the following conditions

lim (x)-- f(x)-- f(O) for almost all x,

(2.1) f(O)}Kn(x)dx-lfF(x)K(x)dx,)
(2.2) lim {f()--f(O)}--p() g--O,

where 2 is ehosen as follows: by continuity of f(), for arbitrary s>0
there exists 2 >0 such that ! 2 implies f()--f(0) < s.

Pirst of all, we shall show that the limit

lira ()K()g

exists for every e, and for all . In fact for ’k we get ,()

Kn(X) dX {p,,,(x)+r,,(x)}K ); where

vanishes on the set N, ,,()g<2- and for every : we have

,,()d <2-. herefore let R,,() be an indefinite integral of

,,, then IR,,(m)1<2- for all . Integrating by arts, the last

integral is evaluated as follows: (*) ’,() 1" K()

]] R,, 2-’(3M+]Rz,,(g)[.[Kn(g)I+[R,,(c)I.]K(c)i+ z(x) ]K(x)dx
+ o

5) Cf. S. Nakanishi" L’intgrale (E.R.) et la thdorie des distributions, Proc.
Japan Acad., 34, 565-570, Proposition 1 (1958).

6) S. Nakanishi" Loc. cit. Lemme 1.
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where Mn--Max Kn(x) for --x, W-

Hence we can write lira 1(x)K(x) dx- lim - lim / lim

lim /r(,,, + ,r( + I(,. By (2.2) [{f() f(0)} ()K()

herefore lim r

s. K() gC.s (by 8 )). Consequently

Next we shall evaluate r( Let 0 be an integer such that

M(1). 2-o < s, and let &- ,() g. Then we select an integer

so that 0 implies A(2)(8.2-’+&)<s. Let 0 and

f f satisfy

the same conditions as described above. Using again integration by
parts we shall obtain the inequality irl<3.2-o.A(i)+2-oB(1),
+A(2) Jo s+z 2s. Therefore, for n __:> n0 we get lim ,,,{r() 2z.
Quite similarly we shall obtain lim] r(1), 2z for n n0. Collecting

the results, we conclude that (E.R.) {f()--f(O)}K()g

for 0. his inequality and 2) give the roof of heorem 1.
8. Let f() be (E.R.)integrable in [-, , then for every the

functions f() cos , f() sin re elso (E.R.)integrable in [--, .
Accordingly we shall obtain the Pourier series

(8.1) 1/2.ao+ (a cos+b sin ),

where Pourier eoeNeients a, b are given by the following (E.R.)inte-
grals

a-- (E.R.) f() cos g, b-- (E.R.) f() sin gz.

Now we shall consider summability of (8.1). In heorem 1, if we
take Pejr kernels K() (1) and Poisson kernel we shall obtain
immediately that under the hypothesis of heorem 1, the series (8.1)
is summable (C, )and summable (A) at the point 0 to the value
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Further we shall consider summability (C, r), 0 < r< 1.
Theorem 2. Let f(x) be (E.R.)integrable in --7, . If f(x) is

bounded in a neighbourhood of the point Xo, then for the (C, r) means
of (3.1) a:(x) we obtain the relation a(Xo)--o(n-), where 0<r<l.

In the definition of fundamental sequence (1) we shall add the
condition:

(3.2) (k)- o(n) or some r, 0 r 1,
k

and in the next theorem (and for this theorem only) we shall say that
the function f(x) is (E.R.)integrable if there exists a fundamental
sequence defining f(x) and satisfies (3.2).

Theorem 3. Let 0<r<l. Under the same conditions as Theo-
rem 1, the series (3.1) is (C, r) summable at the point Xo to the value
[f(Xo +) +f(Xo-- /2.

Proof. Without loss of generality we may suppose that x0-0,
f(xo)-O and f(x) is continuous at x0. Let [V(F, ,; f)} be a funda-
mental sequence defining f(x). Using the same notation as in Theorem
1 we get a(0)--limlr-r and (2.3)is valid here also. If

we show that lim(--0, lim(limI --0 the theorem will be

proved. First, [721 {A(x) fo(x)} g(x) dx + fo(X) K:(x) dx

=0 o

IA( )lg By definition,

=f.()--f()--p() vanishes for in N and inequality (1.1) leads to

the result lr() g

+()+2-. herefore iZ(]<A(i), !fo()+2.2-+(+1)
=0

() 0 (
0

we have as before

+ ,()K;()gSA;(i).2-+2-C’- --.
we have lira 2-- 0. herefore lim (lira I r(-0.

As an immediate corollary of this theorem we shall refer to the
result which is regarded, if it is allowed to say so, to show the advan-
tage of our integral,s

7) It is known that K(t)=O(n-t--) for ntl.
8) In the case of Denjoy-Fourier series, it is known that this circumstance can

not occur. Cf. S. Pollard" The summation of Denjoy-Fourier series, Proc. London
Math. Soc., 27, 216 (1928). Cf. also, A. Zygmund" Loc. cir. p. 268.



No. 2] A Note on (E.R.)integral and Fourier Series 77

Corollary. Let f(x) be (E.R.)integrable in F-.,] in the sense
of Theorem 3. If there is a set E of which measure is positive and
at each point x of E the limits f(xH-), f(x--) exist and finite, then
for Fourier coefficients of (3.1) we have

a--o(n), bn--O(n).
At the end of this section, we shall state a theorem without proof.
Theorem 4. Let f(x) be (E.R.)integrable in --,. If we set

for 0r<l, 0x<2,

f(r,x)-l/2 (E.R.) f(t)(1--r)/{1--2r cos (t--x)-Fr}dt,

then the function f(r, x) is harmonic in the unit circle, and iffurther
indefinite integral of f(x), F(x)--(E.R.)Jf(t)dtthe is derivable at

Xo, then f(r,x) has the limit F’(xo) when (r,x)-->(1, Xo) along any
path not touching the circle.

4. Remark. So far we have considered fundamental sequences
described in 1, but the generalization of this notion was given by Prof.
K. KunugiP According to it we shall call a sequence of neighbourhoods
{Vn}--{V(Fn,,n; fn)} (where ,0,1’", F0FI... and fev for
re>n) star sequence if it satisfies conditions beside (1"), (2*) in 1,

(3*) we can extract from every subsequence [vE} -0,1,2,...,
n0 <n[l <..., of the sequence {Vn}, a sequence {VnE,)}, --0, 1, 2,

", (0)<(1)<’’" which satisfies conditions (1), (2), (3) in 1. For
such two sequences there exists a sequence which has the relation 0)
to both of them.

For star sequence {v}-{V(F,,;f)}, the limit limfn(x)--f(x)

exists almost everywhere and lim f,(x)dx exists for all ae<db

and depends only on f(). If we call this function f(x) is (E.R.)inte-
grable, all the results, except Theorem and its eorollary, are valid also.

Pinally we shall give an example of function whieh is (E.R.)inte-
grable in the sense of this section.1"

Let us consider the Cantor set in the interval 0, 1. For --0,
1, 2,... let Is, 3"----1, 2,..., 2 be the open interval , d), where c, d
are given by c (2a,)(1/3) + (1/3)n/1 d--c / (1/3)+1, the num-

90

bers a are the coefficients of j--1 developed with respect to base

2"j--l--- a2". The function in question is given as follows:

3 (32)n 2n

f(x)--(--1)---:-: for xe U
j=l

=0 for x in Cantor set.

9) Cf. K. Kunugi" Sur une gnralisation de l’intgrale, loc. cit. p. 20.
10) For this notation, cf. K. Kunugi: Loc. cir. p. 12.
11) This example is due to Prof. K. Kunugi" Loc. cit. p. 27.


