33. Mass Distributions on the Ideal Boundaries

By Zenjiro KURAMOCHI

Mathematical Institute, Hokkaido University (Comm. by K. KUNUGI, M.J.A., March 12, 1960)

In the previous paper¹⁾ our proof of 3) of Theorem 8 is incomplete. The purpose of the present paper is to introduce a new operation, to give a proof of the above theorem and to consider mass distributions.

Let U(z) be a positive harmonic function in $R-R_0$ such that U(z)=0 on ∂R_0 and $D(\min(M, U(z))<\infty$ for $M<\infty$. Let D be a compact or non-compact domain. Let $U_{D_n}(z)$ be a harmonic function in $R-R_0-(D\cap R_n)$ such that $U_{D_n}(z)=0$ on ∂R_0 , $U_{D_n}(z)=U(z)$ on $D\cap R_n$ and $U_{D_n}(z)$ has the minimal Dirichlet integral (M.D.I.) over $R-R_0$ $-(D\cap R_n)$. Put $U_D(z)=\lim_n U_{D_n}(z)$. If $U(z)\geq U_D(z)$ for every domain D, we call U(z) a superharmonic function in \overline{R} .

In the sequel, we use the same notations and terminologies as in the previous paper. Let U(z) be a positive harmonic function in $R-R_0$ and superharmonic in \overline{R} . Then $\max_{z \in R_n} U(z) < M$, whence $D(\min(U(z), M))$ $< \infty$. Let $U_n(z)$ be a harmonic function in $R_n - R_0$ such that $U_n(z) = U(z)$ in $R_n - R_0$, and $U_n(z)$ has M.D.I. over $R - R_n$. Then

$$U(z) = \lim U_n(z).$$

Operation. ${}_{D}[U(z)]^{*}$. Let D be a non-compact domain in R. Let ${}_{D_{n}}[U(z)]^{*}$ be a continuous function in R such that $U_{n}(z) - {}_{D_{n}}[U(z)]^{*}$ is harmonic in $\overline{D} \cap \overline{R}_{n}$, ${}_{D_{n}}[U(z)]^{*}$ is harmonic in $R - R_{0} - (\overline{D} \cap \overline{R}_{n})$, ${}_{D_{n}}[U(z)]^{*} = 0$ on ∂R_{0} and ${}_{D_{n}}[U(z)]^{*}$ has M.D.I. over $R - R_{0} - (\overline{D} \cap \overline{R}_{n})$. Then since $\overline{D} - \overline{R}_{n}$ is compact, ${}_{D_{n}}[U(z)]^{*}$ is uniquely determined. In fact, since $U_{n}(z)$ is superharmonic in \overline{R} and $U_{n}(z)$ has M.D.I. over $R - R_{n}$, $U_{n}(z)$ is representable by a unique mass distribution on ∂R_{n} such that $U_{n}(z) = \int_{\partial R_{n}} N(z, p) d\mu_{n}(p)$. Let ${}_{1}\mu_{n}(p)$ be the restriction of $\mu_{n}(p)$ on $\overline{D} \cap \partial R_{n}$. Then

$$D_{D_n}[U(z)]^* = \int N(z, p) d_1 \mu_n(p).$$

Now $_{2}\mu_{n}(p) = \mu_{n}(p) - {}_{1}\mu_{n}(p)$ is also a positive mass distribution, which implies that $U_{n}(z) - {}_{D_{n}}[U(z)]^{*}$ is superharmonic \overline{R} . Let $\{n'\}$ be a subsequence of $\{n\}$ such that ${}_{D_{n}}[U(z)]^{*}$ converges uniformly in R. Put

¹⁾ Z. Kuramochi: Mass distributions on the ideal boundary of Riemann surfaces, II, Osaka Math. Jour., 8 (1956).

 $_{D}[U(z)]^{*} = \lim_{n'} _{D_{n}}[U(z)]^{*}$. $_{D}[U(z)]^{*}$ depends on D and the subsequence $\{n'\}$.

Theorem. Let D_1 and D_2 be two non-compact domains and $\{n'\}$ be a subsequence such that $_{_{1}D_n}[U(z)]^*$ and $_{_{2}D_n}[U(z)]^*$ converge uniformly in R. Then

- 1) $_{_{1}D+_{2}D}[U(z)]^{*} \leq _{_{1}D}[U(z)]^{*} + _{_{2}D}[U(z)]^{*}.$
- 2) $_{D}[CU(z)]^{*}=C_{D}[U(z)]^{*}$ for a constant C.
- 3) $_{D}[U(z)]^{*} \leq U_{D}(z) \leq U(z).$
- 4) Both $_{D}[U(z)]^{*}$ and $U(z)-_{D}[U(z)]^{*}$ are superharmonic in \overline{R} .
- 5) $_{1D}[U(z)]^* \leq _{2D}[U(z)] for _{1}D \subset _{2}D.$
- 6) ${}_{D}[U(z)]^{*}$ is representable by a mass distribution on $\overline{D} \cap B$, where \overline{D} is the closure of D with respect to Martin's topology.
 - 7) $_{B_0}[U(z)]^*=0$ for $U(z)=\int_{B_0}N(z,p)d\mu(p)$, where B_0 is the set of

non-minimal points of B.

1), 2) and 5) are clear. Proof of 3). $D_D(z) = \lim_n U_{D_n}(z)$, where $U_{D_n}(z)$ is a harmonic function in $R - R_0 - (D \cap R_n)$ such that $U(z) = U_{D_n}(z)$ on $D \cap R_n$ and $U_{D_n}(z)$ has M.D.I. over $R - R_0 - (D \cap R_n)$. Now $_{D_n}[U(z)]^* \leq U(z) = U_{D_n}(z)$ on $D \cap R_n$. On the other hand, since both $U_{D_n}(z)$ and $_{D_n}[U(z)]^*$ have M.D.I. over $R - R_0 - (D \cap R_n)$, by the maximum principle $_{D_n}[U(z)]^* \leq U_{D_n}(z)$. Hence

$$_{D} \llbracket U(z) \rrbracket^{*} = \lim_{K = \infty} {}_{D_{n'}} \llbracket U(z) \rrbracket^{*} \leq \lim_{n} {}_{U_{D_{n}}} (z) = U_{D}(z).$$

Proof of 4) and 6). ${}_{D_n}[U(z)]^*$ and $U_n(z) - {}_{D_n}[U(z)]^*$ are representable by positive mass distributions ${}_1\mu_n$ and ${}_2\mu_n \ (=\mu_n - {}_1\mu_n)$ on $\partial R_n \cap \overline{D}$ and $\partial R_n \cap \overline{CD}$ respectively. But the total masses of ${}_1\mu_n$ and ${}_2\mu_n$ are bounded. We can find a subsequence $\{n'\}$ of $\{n\}$ such that both $\{{}_1\mu_{n'}\}$ and $\{{}_2\mu_{n'}\}$ have weak limits ${}_1\mu$ on $\overline{D} \cap \overline{R}$ and ${}_2\mu$ on $\overline{CD} \cap \overline{R}$ respectively. Clearly by $\{n'\} \subset \{n\}, U(z) = \int N(z, p) d\mu(p), {}_D[U(z)]^* = \int N(z, p) d_1\mu(p)$ and $U(z) - {}_D[U(z)]^* = \int N(z, p) d_2\mu(p)$. Hence ${}_D[U(z)]^*$ and $U(z) - {}_D[U(z)]^*$ are superharmonic in \overline{R} . Every μ_n is distributed on ∂R_n , whence ${}_1\mu$ and ${}_2\mu$ lie on B, whence ${}_D[U(z)]^*$ and $U(z) - {}_D[U(z)]^*$ are harmonic in R.

Proof of 7). We proved $U_{B_0}(z)^{2}=0$. Hence by 3) we have 7).

3) of Theorem 8. Every positive harmonic function in $R-R_0$ such that U(z)=0 on ∂R_0 and U(z) is superharmonic in \overline{R} is representable by a positive mass distribution μ on B_1 such that

^{2) 2)} of Theorem 8.

Z. KURAMOCHI

$$U(z) = \int_{B_1} N(z, p) d\mu(p),$$

where B_1 is the set of minimal points.

The set Γ_m is defined as the set (possible void) of all points q of such that $\psi(A_m(q)) = \frac{1}{2\pi} \int_{\partial R_0} \frac{\partial N_{A_m(q)}(z,q)}{\partial n} ds \leq \frac{1}{2}$ (this means $\psi(q) = 0$ $= \lim_m \psi(A_m(q))$), where $A_m(q) = E\left[z \in \overline{R} : \delta(z,q) \leq \frac{1}{m}\right]$. Then $B_0 = \bigcup_{m>0} \Gamma_m$. Suppose $U(z) = \int_{B_0} N(z,p) d\mu(p)$. Then by 2) of Theorem 8, $U_{B_0}(z) = 0$. And by 3) $U_{\Gamma_m}(z) = 0$ implies $\lim_n \Gamma_{m,n}[U(z)]^* = 0$, where $\Gamma_{m,n} = E\left[z \in \overline{R} : \delta(z, \Gamma_m) \leq \frac{1}{n}\right]$. Let z_0 be a point in $R - R_0$. Then for any given positive number ε , there exists a number n(m) such that

$$\Gamma_{m,n} \llbracket U(z_0)
bracket^* \leq U_{\Gamma_{m,n}}(z_0) \leq rac{arepsilon}{2^m} \quad ext{for} \ \ n \geq n(m).$$

For each *m* select Γ'_m (= $\Gamma_{m,n}$) in this fashion. Put $C_m = \sum_{i=1}^m \Gamma'_i$. Then C_m is closed and increases as $m \to \infty$. Denote by \widetilde{A}_m and A_m the closure of the complement of C_m in *B* and \overline{R} respectively. Then the distance between \widetilde{A}_m and Γ_m is at least $\frac{1}{n(m)}$. Thus { \widetilde{A}_n }, which forms a decreasing sequence, has an intersection \widetilde{A} which is closed and, having no point in common with any Γ_m , is a subset B_1 . Now

$$_{C_m} \llbracket U(z)
rbracket^* \leq U_{C_m}(z) \leq \sum_{i=1}^m U_{\Gamma_i'}(z) \leq \sum_{i=1}^m 2^{-i} \varepsilon \leq \varepsilon \quad ext{ for } z = z_0.$$

Observing $\widetilde{A}_m + \widetilde{C}_m = B$, we obtain for a subsequence $\{n'\}$ of $\{n\}$ such that

$$A_m \cap R_{n'}[U(z)]^* \to \tilde{A}_m[U(z)]^*$$
 as $n' \to \infty$,

where $A_m \cap B = \widetilde{A}_m$ and A_m is a closed domain in \overline{R} .

$$\begin{split} & \tilde{\lambda}_m[U(z)]^* \leq \tilde{\lambda}_m[U(z)]^* +_{\mathcal{C}_m}[U(z)]^* \leq \tilde{\lambda}_m[U(z)]^* + \varepsilon \geq U(z) =_B[U(z)]^*.\\ & \text{Now } U(z) - \tilde{\lambda}_m[U(z)]^* \text{ and } \tilde{\lambda}_m[U(z)]^* \text{ are representable by positive}\\ & \text{mass distributions } \mu'_m \text{ and } \mu''_m \text{ over } C_m \cap B \text{ and } \tilde{A}_m \text{ respectively. Let}\\ & \{n''\} \text{ be a subsequence of } \{n'\} \text{ such that } {}_{A_{m+1}\cap \bar{\mathcal{R}}_{n''}}[U(z)]^* \to \tilde{\lambda}_{m+1}[U(z)]^*.\\ & \text{Then } \tilde{\lambda}_{m+1}[U(z)]^* \text{ is representable by } \mu''_{m+1} \text{ over } \tilde{A}_{m+1} \text{ and } {}_{\mathcal{C}_m}[U(z_0)]^* < \varepsilon.\\ & \text{Proceeding in this way, then by 5) } \tilde{\lambda}_m[U(z)]^* \downarrow \tilde{\lambda}[U(z)]^* \text{ and } {}_{\mathcal{C}_m}[U(z)]^*\\ & \uparrow_{\mathcal{C}}[U(z)]^*, \text{ where } \bar{\sigma}[U(z_0)]^* < \varepsilon \text{ by } {}_{\mathcal{C}_m}[U(z_0)]^* < \varepsilon. \ \mu'_m \text{ and } \mu''_m \text{ have weak}\\ & \text{limits } \mu' \text{ and } \mu'' \text{ over } B \cap \bar{\mathcal{C}}(=\overline{\sum C_m}) \text{ and } \tilde{A} = \cap \tilde{A}_m \subset B_1 \text{ respectively.}\\ & \text{Hence} \end{split}$$

$$U(z_0) \leq \tilde{A} [U(z_0)]^* + \varepsilon,$$

where $\mathfrak{A}[U(z)]^*$ and $U(z) - \mathfrak{A}[U(z)]^*$ are superharmonic in \overline{R} and rep-

120

No. 3]

resentable by $_{1}\mu'(=\mu')$ and $_{1}\mu''(=\mu'')$. Let $_{1}\mu'''$ be the restriction of $_{1}\mu''$ on B_{1} and put

$$U_{1}(z) = \int_{B_{0}} N(z, p) d(_{1}\mu'' - _{1}\mu'''). \text{ Then } U_{1}(z) \leq U(z) - \Im[U(z)]^{*} < \varepsilon \text{ for } z = z_{0}$$

and
$$U(z) - U_{1}(z) = \int_{D} N(z, p) d(_{1}\mu' + _{1}\mu''').$$

Repeat the process for $U_1(z)$, writting $U_1(z) = U_2(z) + (U_1(z) - U_2(z))$, where $U_2(z)$ and $U_1(z) - U_2(z)$ are representable by mass distributions on B_0 and B_1 respectively and $U_2(z_0) < \frac{\varepsilon}{2}$.

Proceeding in this way $U_n(z) = U_{n+1}(z) - (U_n(z) - U_{n+1}(z))$, where $U_{n+1}(z)$ and $U_n(z) - U_{n+1}(z)$ are representable by mass distributions over B_0 and B_1 respectively and $U_{n+1}(z_0) < \frac{\varepsilon}{2^n}$. Then

$$U(z) = U(z) - U_1(z) + \sum_{n=1}^{\infty} (U_n(z) - U_{n+1}(z))$$

and U(z) is represented by a mass distribution μ over B_1 . Let U(z) be a positive harmonic in R and superharmonic in \overline{R} . Then $U(z) = \int_B N(z, p) d\mu(p)$. Let μ' be the restriction of μ over B_0 . Then μ' can be replaced by a distribution over B_1 and μ can be replaced by another distribution μ^* on B_1 without any change of U(z). Hence we have the theorem.

Minimal point. Let p be a point in $\overline{R} - R_0$ and let $F_m = E\left[z \in \overline{R}: \delta(z, \rho) \leq \frac{1}{m}\right]$. If there exists a sequence $_{F_m}[N(z, p)]^* \downarrow 0$ as $m \to \infty$, then we call p a non-minimal point, otherwise a minimal point.

Theorem. Denote by B_1^* and B_0^* the set of minimal points and non-minimal points. Then

$$B_0 = B_0^*$$
 and $B_1 = B_1^*$.

Let $p \in B_0$. Then $N_{F_m}(z, p) \downarrow 0$ as $m \to \infty$ by Theorem 9. Then by 3) $_{F_m}[N(z, p)]^* \downarrow 0$, whence $p \in B_0^*$ and $B_0 \subset B_0^*$.

Let $p \in B_1$. Then

 ${}_{B\cap F_m}[N(z, p)]^* \leq N(z, p) \leq {}_{B\cap F_m}[N(z, p)]^* + {}_{B\cap \overline{CF}_m}[N(z, p)]^*.$

Now $_{B\cap F_m}[N(z, p)]^*$, $_{E\cap \overline{OF}_m}[N(z, p)]^*$, $N(z, p) - _{B\cap F_m}[N(z, p)]^*$ and $N(z, p) - _{B\cap \overline{OF}_m}[N(z, p)]^*$ are superharmonic in \overline{R} . By the minimality of $N(z, p)_{B\cap F_m}[N(z, p)] = KN(z, p)$ and $_{B\cap CF_m}[N(z, p)] = K'N(z, p)$. Assume K < 1, then K' > 0, which implies $_{B\cap \overline{OF}_m}[N(z, p)]^* = K'N(z, p)$ is represented by a positive mass distribution μ_m over \overline{CF}_m . Assume that μ_m is not a point mass, we can find a mass distribution μ' such that $0 < \mu'_n < \mu_m$ and $\int N(z, p) d\mu'_n(p)$ is not a multiple of N(z, p), because

Z. KURAMOCHI

if for every μ'_n , $\int N(z, p)d\mu'_n(p) = K'N(z, p)$, we can select a descending sequence of closed subsets T_n in \overline{CF}_n such that diameter of $T_n \to 0$ and $\bigcap T_n = q$. Put $\mu_n = \frac{\mu \text{ on } T_n}{\text{total mass of } \mu}$ on T_n . Then $\{\mu_n\}$ has a weak limit mass at q and $N(z, p) = N(z, q) : q \in \overline{CF}_m$. This implies p = q. This is a contradiction. If μ_m is a point mass, then we have the same contradiction. Hence $B \cap F_m[N(z, p)]^* = N(z, p)$ for every m. Thus $p \in B_1^*$ and $B_0 = B_0^*$ and $B_1 = B_1^*$.