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26. Note on Fractional Powers of Linear Operators

By Tosio KATO
Department of Physics, University of Tokyo
(Comm. by Z. SUETUNA, M.J.A., March 12, 1960)

In the preceding paper by K. Yosida,” it is shown that the frac-
tional power 4%, 0<a<1, of a linear operator A in a Banach space X
can be constructed whenever —A is the infinitesimal generator of a
strongly continuous, bounded semi-group {exp(—tA4)}, and that — A"
also generates a semi-group {exp (—tA*)} which has an analytic exten-
sion in a sector containing the positive t-axis. In the present paper we
shall give another proof of these results, together with some generali-
zations,

We consider linear operators in X which are not necessarily infini-
tesimal generators of semi-groups. For brevity we shall say that A is
of type (w, M)? if

i) A is densely defined® and closed, and

ii) the resolvent set of — A contains the open sector |arg 1|<r—a,
O<w<r, and 2(2+A)"! is uniformly bounded in each smaller sector
|arg A|<z—w—¢, €>0; in particular
(1) A G+A) 1 |<M, 2>0.

As is well known, —A is the infinitesimal generator of a strongly
continuous contraction semi-group if and only if A is of type (z/2, 1).

Theorem 1.* Let A be of type (w, M) with w<=x/2. Then —A
s the infinitesimal generator of a semi-group {T,},>,={exp(—tA)} with
the following properties.

a) T, has an analytic extension for |arg t[<%-—w.

b) In each smaller sector |argt|<%—w~e, e>0, T, and t dT,/dt

1) K. Yosida: Fractional powers of infinitesimal generators and the analyticity
of the semi-groups generated by them, Proc.Japan Acad., 36, 86-89 (1960). For con-
venience we deviate from his notation in denoting by — A instead of A the infinitesimal
generator of a semi-group. The author is indebted to Professor Yosida for his sug-
gestion to this problem.

2) A similar class of operators is considered by M. A. Krasnosel’skii and P. E.
Sobolevskii, Doklady Acad. Nauk USSR, 129, 499 (1959) and other Russian authors
cited in this paper. But it appears that the semi-groups generated by — A® are not
considered by them.

8) This is a consequence of ii) if X is locally sequentially weakly compact, see
T. Kato: Proc. Japan Acad., 35, 467 (1959).

4) In case M=1, this theorem is contained in K. Yosida: Proc. Japan Acad., 34,
337 (1958). Cf. also E. Hille and R. S. Phillips: Functional Analysis and Semi-groups,
Am. Math. Soc. Collog. Publ., Vol. 81, Theorems 12.8.1 and 17.5.1 (1957).



No. 3] Note on Fractional Powers of Linear Operators 95

are uniformly bounded and T, coverges strongly to 1 (=identity) for
t—>0.

Proof. T, is given by the Laplace transformation
(2) T,=exp (—tA)=—L_ [e¥(1+A)-1ds,
2r1

L
where the integration path L runs in the sector |arg i|<z—o from

e to c0e’: with -g—< 0, 6;<m—w. The assertions are easily proved

by choosing 6;, 4, appropriately. In proving b) it is convenient to
introduce the new integration variable {=t..

Theorem 2. Let A be of type (w, M). The fractional power A®,
0<a<l, can be defined through®

o-1_ Sinza [ 1% -1
(3) (aran™= T ‘0[ B+22¢% cos ma + p2* ()7
which is valid for A on and near the positive real axis. The operator
A® is of type (aw, M). If aw<n/2, —A® is the infinitesimal gener-
ator of an analytic semi-group {T,.} of the type described im Theo-
rem 1.

Remark. If —A is the infinitesimal generator of a strongly con-
tinuous, bounded semi-group, {T, .} is defined for 0<a<1 and also a
bounded semi-group (for real ¢). A* and T,. coincide with the cor-
responding operators defined by Yosida.?

Proof. I. For any 2 on or near the positive real axis, the integral
in (8) is absolutely convergent by ii). Let us denote by R(1) the
bounded linear operator thus defined by the right member of (8). R(2)
satisfies the resolvent equation

(4) R(2)—R(2)=—(—21)RQQ)R(Z).

This could be verified by a direct calculation, but the following con-
sideration seems to be simpler. For the moment assume that the
origin 0 belongs to the resolvent set of A. Then it is easily seen that
R(2) is given by the complex integral

(5) R(z):Lf,(Hz«)-l(A—z)-ldz

2n1

where 2>0 and the path C runs in the resolvent set of A from coe~%
to e, w<f<r, avoiding the negative real axis and 0; (3) is obtained
from (5) by deforming C to the upper and lower banks of the negative
real axis. The absolute convergence of the integral in (5) also follows
from ii). Since (5) is a kind of Dunford integral, it is easy to see that
R(2) satisfies (4). In the general case, we replace A by A-e¢ with
€>0 and let e—~>0 afterwards. Since the right member of (3) with 4

5) If A-! is bounded, (8) is true even for 1=0 and coincides with the operator
A-e defined in 2).
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replaced by A-+¢ converges for e—>0 strongly to R(1), it follows that
R(2) satisfies (4).

II. Hence R(2) can be expressed in the form (1+A*)~! with a
closed linear operator A¢, provided that R(2) has the (common) null
space {0}. But this follows from the strong convergence AR(1)—>1,
A—>+4 oo, which can be deduced from (3) and the fact that i1(1+A4)-*
—1. At the same time this shows that A* is densely defined.

III. It is easily seen from (3) that R(A) is defined and analytic
in the sector |arg 1|<(l1—a)z. But it can further be continued ana-
lytically to the larger sector |arg 1|<z—aw. To see this it suffices to
regard the integral in (8) as a complex integral and shift the integra-
tion path to the ray arg p==x(r—w—¢) with a small ¢>0. A simple
homogeneity consideration shows also that ii) is satisfied for A* with
o replaced by aw. In particular for 2>0, (3) and (1) give

(6)  [latan < [Tt Mg, M

+22p" cos a2 p A
This completes the proof that A® is of type (aw, M). The last state-
ment of Theorem 2 then follows from Theorem 1.

IV. It remains to show that {T,} coincides with the semi-group
constructed by Yosida. To this end we first consider the special case
in which —(A4—¢), for some >0, is the infinitesimal generator of a
bounded semi-group, so that the half-plane Rez<e belongs to the
resolvent set of A. Since w==/2, the path C of (5) can be chosen in
such a way that we have Rez<c¢ and |argz*|<¢<z/2 for 2¢C. Then
(6) is valid for all 2 with |arg 1|<z—¢(>=/2). Take the path L in
(2) in such a way that this condition is satisfied for all i¢L. Then
we have from (2) and (5) (note that (1+A%) '=R(2))

T, ,=exp (—-tA"‘):(-z—?lT-i—y [ ettd; [ (A+29)-1(A—2)-'de
1

(7) g
1 ~tz® ° T
e dez | e*T.dr (T,=exp (—tA))
o]

i

e *(A—2)"'dz

Il

2re ),

=1 (74 f ety

271 , 2

This shows® that our {7, .} coincides with the semi-group defined by
Yosida. The general case can be dealt with by replacing A by A-+4¢
and letting ¢—0; it suffices to note that™ the strong convergence
[A4+(A4+e) ] > (2+ 4%, e—>0, 1>>0, already proved implies the strong
convergence exp [ —t(A-+¢)*]—>exp (—tA%), t>0.

6) See Eqgs. (10) and (16) of Yosida.?
7) See e.g. H. F. Trotter: Pacific J. Math., 8, 887 (1958).




