48. On Quasi-normed Spaces. III

By Tomoko Konda

(Comm. by K. KUNUGI, M.J.A., April 12, 1960)

In this paper, we consider the inverse of a linear transformation of a (QN) space into a (QN) space. Here, we consider a linear transformation T whose domain is a (QN) space E with the power r $(0 < r \le 1)$ and range is a (QN) space F with the power s $(0 < s \le 1)$, see [2], [3] or [4].

If a linear transformation T is one-to-one, then T has the inverse transformation T^{-1} of F onto E.

Theorem 1. A linear transformation T has a bounded inverse if and only if there exists a positive number m such that $||T(x)||_s$ $\geq m ||x||_x^{\frac{s}{2}}$ for all $x \in E$.

Proof. Suppose that T has a bounded inverse T^{-1} , then there exists M such that $||T^{-1}(y)||_r \leq M ||y||_s^{\frac{r}{s}}$, and there exists $x \in E$ such that y = T(x). Therefore,

$$|| T^{-1}(T(x)) ||_{r} \le M || T(x) ||_{s}^{\frac{1}{s}},$$
$$|| x ||_{r} \le M || T(x) ||_{s}^{\frac{r}{s}}$$

and

$$||x||_r^{\frac{s}{r}} \leq M^{\frac{s}{r}} ||T(x)||_s.$$

Let $M^{\frac{s}{r}} = m^{-1}$, then we have $m ||x||_{r}^{\frac{s}{r}} \le ||T(x)||_{s}$.

To prove the inverse, let $||T(x)||_s = 0$, then T(x) = 0 and x = 0. On the other hand x=0 implies $m ||x||_r^{\frac{s}{r}} = 0$. Therefore T is one-to-one and has the inverse T^{-1} of T.

In Theorem 1, we can take m as the norm $||T||_s$ of the transformation, i.e. $||T(x)||_s \ge ||T||_s ||x||_r^{\frac{s}{r}}$. Consequently, the norm of inverse transformation is defined by $||T^{-1}||_r = ||T||_s^{-\frac{r}{s}}$, hence we have $||T^{-1}||_r = ||T||_s^{-r}$.

Now, we shall show that a well-known Banach theorem on inverse transformation is also true for the case of (QN) spaces. First, we shall prove Lemmata.

Lemma 1. Let T be a bounded linear transformation of E into F. If the image under T of the unit sphere S_1 in E is dense in some sphere U_r about the origin of F, then $T(S_1)$ includes U_r .

Proof. By the assumption, the set $A = U_r \cap T(S_1)$ is dense in U_r . Let y be any point of U_r . For any $\delta > 0$, we take $y_0 = 0$ and choose inductively a sequence $y_n \in F$ such that $y_{n+1} - y_n \in \delta^n A$ and $||y_{n+1} - y_n||$ T. KONDA

[Vol. 36,

 $<\delta^{(n+1)s}r$ for all $n\ge 0$. Therefore, there exists a sequence x_n such that $T(x_{n+1})=y_{n+1}-y_n$ and $||x_{n+1}||<\delta^{ns}$. If we put $x=\sum_{1}^{\infty}x_n$, then $||x||_r\le\sum_{1}^{\infty}||x_n||_r<\sum_{0}^{\infty}\delta^{ns}=\frac{1}{1-\delta^s}$

and

$$T(x) = \sum_{1}^{\infty} (y_n - y_{n-1}) = y.$$

This implies the image of the sphere of radius $1/1 - \delta^s$ covers U_r . For δ is arbitrary, $T(S_1)$ covers U_r .

Lemma 2. If the image of S_1 under T is dense in no sphere of F, then the range of T includes no sphere of F.

Proof. Let $T(S_1)$ be not dense in any sphere of F, then $T(S_n) = \{T(x); ||x||_s < n\} = n^{\frac{1}{r}}T(S_1)$ is not dense in F. For any sphere $S \subset F$, there exists a closed sphere $S(y_1, r_1) \subset S$ and it is disjoint from $T(S_1)$, and by the induction, exists a sequence of closed spheres $S(y_n, r_n) \subset S(y_{n-1}, r_{n-1})$ such that $S(y_n, r_n)$ is disjoint from $T(S_n)$. Now, we can choose that $r_n \to 0$, and then the sequence $\{y_n\}$ is Cauchy. Its limit y is included in all the spheres $S(y_n, r_n)$ and not included in all the sets $T(S_n)$. By $\bigcup_n T(S_n) = T(X)$, T(X) does not include any sphere in F. The proof is complete. Next, we shall show the following.

Theorem 2. If T is one-to-one bounded linear transformation of E onto F, then T^{-1} is bounded. (For the usual case, see [1].)

Proof. By Lemma 2, $T(S_1)$ is dense in some sphere in F, and then $T(S_2)$ is dense in a sphere U_R . But $U_R \subset T(S_2)$ by Lemma 1, $T^{-1}(U_R) \subset S_2$ and $||T^{-1}||_r \leq 2R^{-\frac{r}{s}}$.

Corollary. Suppose that $r \leq s$ in a (QN) space E with the power r and a (QN) space F with the power s and the graph of a linear transformation T of E into F is closed, then T is bounded.

Proof. Let $||(x, Tx)|| = ||x||_r + ||Tx||_s^{\frac{r}{s}}$, then it is a quasi-norm with the power r and by the assumption the graph of T is a (QN) space with the power r. By Theorem 2, the transformation $(x, Tx) \to x$ which is norm decreasing and onto E has the inverse transformation and it is bounded. Hence, there exists a constance C such that $||x||_r + ||Tx||_s^{\frac{r}{s}} \le C ||x||_r^{\frac{s}{r}}$, $||Tx||_s^{\frac{r}{s}} \le C ||x||_s^{\frac{s}{r}}$ and $||Tx||_s \le C^{\frac{s}{r}} ||x||_r^{\frac{s^2}{r^2}}$. This implies the bound of T.

Corollary is a generalization of the closed graph theorem for a case of (QN) spaces.

References

 L. A. Ljusternik und W. Sobolew: Elemente der Funktionalanalysis, Akademie-Verlag, Berlin (1955). No. 4]

- [2] T. Konda: On quasi-normed spaces. I, II, Proc. Japan Acad., 35, 340-342, 584-587 (1959).
- [3] M. Pavel: On quasi-normed spaces, Bull. Acad. Sci., 5, no. 5, 479-487 (1957).
- [4] S. Rolewicz: On a certain class of linear metric spaces, Bull. Acad. Sci., 5, no. 5, 471-473 (1957).