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Throughout this note we denote by R a Riemann surface. Suppose
that p is a collection {p(z)} of non-negative continuously differentiable
functions p(z) of local parameters z--+iy such that for any two
members p(z) and p(z’) in p there holds the relation

p(z’)=p(z)l dz/dz’ ]2.
We say that such a p is a density on R. We consider the partial
differential equation of elliptic type
1 zlu(z)=p(z)u(z),

which is invariantly defined on R. We denote by B(R) the totality
of real-valued bounded solutions of this equation (1) on R. Here a
solution of (1) is always assumed to be twice continuously differenti-
able. Then B(R) is a Banach space with the uniform norm

Ilu]l-supl ul.
We are interested in the comparison problem of Banach space structures
of B(R) for different choices of densities p. It is remarked, as 0zawa
proved in 3, that if R is of parabolic type, then Bo(R) is the real
number field and B(R) consists of only zero unless p-0. Hence we
may exclude this trivial case as far as we are concerned with spaces

B(R). So we assume that R is of hyperbolic type throughout this note
unless the contrary is stated. Concerning this comparison problem
Royden 4 proved that if there exists a positive constant a such that

a-lp_q_ap
holds on R except a compact subset of R, then Banach spaces B and
Bq are isomorphic. In this note we give a different criterion for B
and Bq to be isomorphic and state an application of this to removable
singularities of bounded solutions of (1).

Theorem 1. If two densities p and q on R satisfy the condition

2 ) F;! p(z)--q(z)ldxdy<

then Banach spaces B(R) and Bq(R) are isomorphic.

Proof.) Let [R} be an exhaustion of R, i.e. Rn is a subdomain
of R whose closure is compact and whose relative boundary R con-
sists of a finite number of closed analytic Jordan curves and moreover

1) For elementary knowledge concerning the equation /u pu on a Riemann surface,
refer to Myrberg [1, 2] and also to Royden [4, section lJ.
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{Rn} satisfies

RR,/; R= [.J R.
For real-valued bounded continuous function f defined on R, we define
transforms Tf and tf as follows:

(Tf)(Zo)-f(Zo)+(2)-ff(p(z)-q(z))gq(z, Zo)f(z) dxdy

and

(tf)(Zo) -f(z0) 4- (2zr)-ff(q(z) p(z))g(z, Zo)f(z) dxdy,

where g(z, zo) and g(Z, Zo) are Green’s functions of R with poles z0
associated with the equations zlu--pu and zlu-qu respectively. These
are well defined in virtue of the condition (2). We also define auxiliary
transforms T,f and tf of real-valued bounded continuous function f
defined on R as follows:

Tnf)(Zo)-f(Zo) 4-(2)-f;(p(z)--q(z))gy(z, Zo)f(z) dxdy

and

(tf)(Zo) f(zo)- (2)- Zo)f(z) dxdy

where g’(z, Zo) and g(z, z) are Green’s functions of Rn with poles
z0 associated with the equations lu--pu and zlu--qu respectively.

If g is continuous on R and is a solution of zlu=pu (or lu=qu)
on Rn, then Tg (or tg) is continuous on R and satisfies the equa-
tion 2u--qu (or zlu=pu) on R and also
(3) ]] Tg]]--]]gl] (or
To verify this, we take a small circle U with radius ] around z0

and a subdomain G of R such that GR and G/ZR as 0
and 3G consists of the same number as 3R of analytic closed Jordan
curves and put G-G- U. Let h (or h) be the solution of Dirichlet
problem with respect to the equation zlu--qu and the domain R (or
G) with the boundary value g on 3R (or 3G). Using Green’s formula
we have

(4)
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where g(z, Zo) is the Green’s function of G with pole z0 associated
with the equation zlu-qu. It is easy to see that

5 fg(z, Zo)* dg(z) 0(7)
3U,

and

(6)

and

(7)

aG

g(z)*dg)(z, Zo) 2g(z0)+ O(]).

From (4), (5), (6) and (7), we get

h(zo)-- g(Zo) + (2)-1JJ’(p(z)--q(z))g)(z, Zo)g(z) dxdy+0(7).
G

Hence making ]’0, we see that

8 h(zo)--g(Zo)+(2)-ff (p(z)--q(z))g)(z, Zo)g(z) dxdy.
G

As g--h is uniformly continuous on R and vanishes on 3R, so we
have lim sup g--h--O or lira sup h,--h--O. From this, using

G 0G

maximum principle, we see that lim ][h--h]]a--O. In particular
+0

9 lim h(zo)- h(zo).

On the other hand, g)(z, Zo)/g)(z, zo) as z0 and
z0) a(z)

and the latter is integrable on R. Thus, by Lebesgue’s convergence

lff(p(z)--q(z))g)(z, Zo)g(z) dxdy

(10)
;;(p(z)--q(z))g’)(z, Zo)g(z) dxdy.

From (8), (9) and (10), we see that h(zo)--(Tg)(Zo). This proves our
first assertion. The equality (3) is now a direct consequence of the
maximum principle. Similarly, the assertion concerning t is verified.

From the above, we easily see that
() tn(Tng g (or T(tg) g)

for any g continuous on R and satisfying zlu--pu (or lu--qu) on

Rn.
On the other hand, if a uniformly bounded sequence [f} of real-

valued continuous functions f defined on R converges to a function

f defined on R uniformly on each compact subset of R, then for each
point z0 in R

theorem,
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(12) (Tf)(Zo)---- lim,(Tf)(Zo).
In fact, let K be an arbitrary compact subset of R and f.I _M for
all n. As g(Z, Zo)--g’(Z, Zo)O uniformly on each compact subset of
R, so we get

an(Zo) S;(P(z)--q(z))gq(Z, zo)f(z)dxdy-ff(p(z) Zo)

f(z) dxdy

_
(llf--f ll- ll gq--g(q’)llM)_;;I p(z)--q(z) gq(Z, Zo) dxdy

2Mff p(z)-q(z) gq(Z, Zo)+ dxdy.

From this we have

lim a(Zo) <_2Mff p(z) --q(z) gq(Z, Zo) dxdy.

In virtue of the condition (1), letting K/R, we see that
(13) lim a(z0) =0.
Then the assertion (12) follows from (13) and from the inequality

(Tf)(Zo)--(Tf)(Zo) --] f(Zo)--f(Zo) +a(Zo).
Now take a function u in B(R) (or Bq(R)). From (3), the se-

quence {Tu} (or {tu}) is bounded by Ilu[[ in the absolute value.
Hence by (12) we see that
(14) Tu limTu (or tu-- limit.u)
and
(15) ]] Tu ]]

_
]1Tu II- ]1 u ]] (or

where the convergence is uniform on each compact subset of R by
the Harnack type inequality. Hence Tu (or tu) belongs to B(R) (or
Bq(R)). In virtue of (14) and (15), we may apply (12) to (11) with
g=u and then we get

t(Tu) u (or T(tu) u).
This shows that T (or t) is a one to one mapping of B(R)(or Bq(R))
onto Bq(R) (or B(R)) and T=t-. As T and t do not increase norm,
so T and t are isometric. Thus Banach spaces B(R) and Bq(R) are
isomorphic. This completes the proof of Theorem 1.

Assume that a part F of the ideal boundary of R can be realized
in a larger surface R’ as a relative boundary consisting of a finite
number of analytic closed Jordan curves and p is the restriction on
R of a density on R’. In this case, we denote by Br(R)the subspace
of B(R) consisting of every function in B,(R) which vanishes con-
tinuously on F. With an obvious modification of the proof of Theorem
1, we can prove the following

Theorem 1. Under the assumption that

_fi_f p(z)--q(z) dxdy( 2’)
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Banach spaces Br,(R) and Br(R) are isomorphic.
Remark. From the proof we see at once that the assumption (2)

in our Theorem 1 (or 1’) can be replaced by the following weaker one:

(16) _ff p(z)--q(z) (g(z, Zo) z7 g(z, zl)) dxdy< o

for some points z0 and z in R. In the case q-0, (13) is equivalent
to the following

(17) ffp(z)go(z, Zo) dxdy<

for some point z0 in R. Hence in particular we conclude that under
the assumption (i7), Banach spaces HB--Bo and B, are isomorphic.
It is an open question whether or not (14) is also a necessary con-.
dition for HB and B to be isomorphic.

Let p be a density on R. A compact subset E in R is said to
be B-removable if for any subdomain D of R containing E and for
any bounded solution u of lu-pu on a component D of D--E whose
boundary contains the boundary of D can be continued to a solution
of lu=pu on D. In this definition, we may assume without loss of

generality that D is compact and the boundary 3D of D consists of
a finite number of analytic closed Jordan curves. As an application
of our comparison theorem, we state

Theorem 2. For any density p on R, a compact subset E of R
is B-removable if and only if the logarithmic capacity of E is zero.)

Proof. First notice that D and D are hyperbolic Riemann sur-
faces. Let p and q be any two densities on R. By maximum principle,
it is clear that
(18) B(D)-Bq(D) [0}.
As D is compact, so we have

(19) ff p(z)--q(z) dxdy

_
ff p(z)--q(z) dxdy<

.DE

Assume that E is B-removable. Then any function u in BOarDs, is
the restriction of a solution u’ in B’(D). Hence by (18), u-0 and
so B’(D) consists of zero only. In virtue of (19), by using Theorem
1’, it holds

BOz’rn Sz’(n)--[O}.q

Hence BD(D) consists of zero only.
Let v be an arbitrary element in Bq(D). We may assume without

loss of generality that v is continuous on 3D[JD. Let v’ be con-

tinuous on D and v’-v on 3D and v’-qv’ in D. Putting v"--v’--v,

2) The "if part" of this theorem was proved by Myrberg [2J. Professor M.
Ozawa kindly informed me that he has also obtained the same result as our Theorem
2.
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we see that v" is in BZ’(D) and hence v"=---0 or v’-v on D. Thus
E is Be-removable.

Hence we have proved that for any two densities p and q on R,
E is B,-removable if and only if E is Ba-removable. In particular,
taking q-0, and noticing that Bo-removable set is nothing but a set
of logarithmic capacity zero, we get the assertion of our theorem.
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