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79. On a Metric Characterizing Dimension

By Jun-iti NAGATA
Osaka City University and University of Washington
(Comm. by K. KUNUGI, M.J.A., June 13, 1960)

As well known, a separable metric space has dimension=<n if and
only if it admits a topology-preserving metric such that almost all of
the spherical nbds (=neighborhoods) of any point have boundaries of
dimension<n—1 [1, 2]. To extend this theorem to a non-separable
metric space and its covering dimension, we must face two problems.
The first of them is how to modify the above condition of metric to
fit it for the non-separable case, because in that case, we can not
regard this condition as a sufficient condition for n-dimensionality so
far as the well-known conjecture, dim R=ind dim R, has not yet been
solved. The second is how to manage the proof in a non-separable metric
space R without a measure, because, although the above theorem was
originally proved by virtue of Szpilrajn’s theorem on the so-called p-
dimensional measure and dimension [37], the measure does not work
at all in a general metric space.

After all we can insist the following theorem for a general metric
space R and the covering dimension of R.

Theorem. A metric space R has dimension<mn if and only if
it admits a topology-preserving metric such that the spherical nbds
S%(p), 1=1,2,--+ of any point p have boundaries of dimension=n—1

2

and such that {S £ (p)|pe R} is closure preserving for every 1.
2

Remark. We denote by S.(p) the spherical nbd of p with a radius
g, i,e. Sip)={q|p(p,q)<e}. We call a collection {S,|reI'} of subsets
“closure preserving’ if ~ S,=""S, for any subset 4 of I". The metric

€4 r€4
in this theorem is a particular one; the metrics of Euclidean spaces,

for instance, do not satisfy the second condition. To replace S%(P),
2

4=1,2,-+- in this theorem by more spherical nbds will be another
interesting problem.

Proof. Sufficiency: First, let us note that {BS 2%(20) | pe A} is
closure preserving and B[V{S%(p) |peA}]CV{BS::T(p)| pe A} for every
subset A of R, for {Si1(p)|pcR} is closure preserving, where we denote
by BS the boundary zf S. Hence dim “{BS is (p)|pe A}=n—1 follows
from dim BS_;?(p) <n-—1, pe A by virtue of a theorem due to K.
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Nagami [4], and accordingly we get dim B[ “~{S 1(p)|peAf]=n—1.
22

Let F' and G be given disjoint closed sets; then there exist, by the

above notice, two sequences U, DU, DU,D---DF and W,DW,DW,
D _'_DG of open sets U, and W, such that

F_ Ui, G— ~W, dim(U,—-U)s=n—1, dim(Wi——Wi)gn—l,
—1
1=1,2,-
It is clear that U—V(U W,) is an open set satisfying FCUC R—G,

U— CV{(U U)V(W W)} that implies dim (TU—U)<n—1 in view

of the sum theorem and accordingly dim R<n can be concluded.
Necessity: Let {R}=3,>8BF**>B,>VF**>... be a sequence of

locally finite open coverings B,, i=1,2,. - - such that {S(p, B,)|1=1,2,- -}

is a nbd basis of each point p and such that dim B(V)<n—1 for every

Ve:’ B, (in this paper we owe notations about covering to [5]). The
=]

existence of such a sequence is assured by the n-dimensionality of R.

Now we define coverings u;i and U1 10-2) for i=1,2,--, k=1+1,
142, by u_%=,si, 11_1_(1_L)={R—S(R U, U1)|Uell.}; then r=r

2 PN ok 2t

obviously implies U, <l,,. It is easy to see that ¢(x,y)=inf {r|xeS(y,U,)}
satisfies the following three conditions,

1) o, ¥)=0; ¢(x,y)=0 if and only if x=y,

2) o, )=y, 2),

3) o(x,y)<e and ¢(y,2)<e for a positive number ¢ imply ¢(zx, 2)
< 2e.
To check the third condition, we assume, for instance, ¢(x, y) <¢(y, 2)=0.
1

Since the value of ¢(y,2) must be either — 2i<1—%) for some 7

and £, let o(y, z)=%<1——21—k><s; then there exist U, U,ell e such that
2
z,ye R—S(R—U,, uik) and y,2¢e R—S(R—U,, 11%). Since ye U, ~ U,=9,
2 2

there must be Uaell 1 (>11"§) with U,DU,~ U, Hence x,z¢R—S
ot
(R— Us,lll)ell L (1 1), Whlch implies ¢z, 2)<—— 1 (1—-—21—,6)<28. If the

o1 = gi-t
value of go(y, z) would have a form of %, the proof would be much
easier. At any rate, the point is in the fact that U}<lU,. Thus

we get, by A. H. Frink’s lemma [6], a metric function p(p,q) of R
that is defined by

o(p, @) =inf {p(p, #;)+o(2,, )+ -« + + (2, Q) |2, € R,
j=1,-++,m; m=1,2,...}

and satisfies —i—so(p, N=p(®, O)=¢(p, 9).
Now, the problem is to show that p is the desired metric. The
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prinecipal point of the proof is to show S(p, . ) S (p) for every PeR.

A) First, it is clear that qe S(p, 11 ) 1mp11es o(p, q)<—, for

p,qeU ell1 implies p,ge R—S(R—U, ll_k) for a sufficiently large k,
2

1 1
hich ') (1_”“>< ;
which means o(p, ¢9)<— o or) ~gi

B) Next, we shall show that ¢ ¢S(p, ll_l_t) implies o(p, 9) = 2 =

2
To show this, it suffices, in view of the definition of p, to show that if
Uj/'\Uj+1:\:¢r j:l’- ) m—1 (m>2); Ujeurj’ j:]-;' M

.
’

peU, qeU,, then jzyj_%
1) In case of r é‘-l-—» j=1,-+-+,m, we define new coverings
7 2i+1

111 and ul(l 1y by
2

ul—u1, =U, iy h=1+1,142,---, k=h+1,h+2,. .-,
¥ W ?»( -0 w5

w, =y, 1, (1_L)={R—S<R—U,ui>weu; b k=il itz
9t ok 2t

2t 20+1

u',l =u,1*r u,1 (1 "'u k=?:+1y i+2” )
S (G IO
r —1* ul —11 , k=1 1’ ) 2,00,
Wy =W W= lo—;,-c) i+l i+
113_:11/;:’ u’i(1 )_u Tees, k=i+1, i4+2,- -,
2 2 2
W=(R}, W,_ 1)—{R}, =i+1, i+2,-

Then it is easy to see that W<l if »<7' and that W*<lU/, if ré%.
Hence ¢'(z, y)=inf {r|xeS(y, II)} satisfies the previous conditions 1), 2),
8) in the same way as shown there. Therefore p'(p, ¢)=inf {¢'(p, x,)
Feei+0'@n @) |%,e R, §=1,- -+, m; m=1,2,---} is another metric func-
tion of R satisfying _1’99, <p'=¢'. Now, since U,cll, ; and r,_s_-2~il-+7,
j=1,---,m, we may regard U, as a member of 11’ that is equal to U, ;
by the definition. Hence we get —¢'(p, q)<p’(p, q) <Z r;. On the
other hand we get
S(p’ 1[{2_3_) =S(p: ul_l_***) CS(p, u_l_)$q
9t+1 9l+l P

from the definition of 1’;s and the fact that U**=U*¥*=Pri*<B,

PYAxS Py 9i+1

=lU;. This implies ¢'(p, q)>~—2——-, and hence Zr 1, 2 —1
K ! M= g g

Incidentally, let us note that we may conclude jErj 2£1 - whenever
=1
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q¢S(p,U1); this remark will be used later.
2v

2) In case of r;> j, We may assume —%>rj>-é—i1+—1—,

because Zfr >_;Z is clear if » >%,. Hence we can assume r.—%
j=1

<l—§> for some k=i+1. Let R—S(R—U, 11 ) U, ellrj, then since

qq;S(p,ll ) either p or ¢ is not contained in U Let us, for example,
assume q¢U and let erj,\Lm, then since q¢S(z, 111) we get

71+ 72+ - +7r,>—— by the remark at the end of the proof 1).
Therefore Erj ity >2£<1—§é>+—é,}?g-21{.
can conclude the validity of B) as well as that of A), which implies
S £ (»)=S(p, B;,) because of V,=U Ep and accordingly we get

2 2

BS 1 (p)=BS(p, B)T{B(V)|pe VeB}

Since dim B(V)\’n 1 for every Ve, we have dim le(p)<n 1
in view of the sum theorem.
Now the only problem is to show that {Si(p)|pecR} is closure

2k +1
Thus we

preserving. To show it, we deal with a given point ¢ with g&“~{S 4 ()|
peA} for a subset A of R. Let {V|Ve®, V_ Ax¢}=2 and let U(q)
be a nbd of ¢ intersecting only finitely many sets V,, j=1,--+, m, in B,
If qu then qu{S (p)|peA} contradicting the assumption; hence
it must be ¢¢V,, j= 1 ,m. Therefore W(q)-—,\(R V)~ U(g) is a
nbd of ¢ satisfying W(q) ~S(p, B,)= W(q),\S1(p) ¢ for every peA,
which implies the closure preservation of {S (p) |pe R}. Thus the proof
of this theorem is complete.

Corollary 1. A metric space R has dimension<mn if and only if
it admits a topology-preserving metric such that the spherical nbds

S s (p), ©1=1,2,- -+ of any point p have boundaries of dimension<n—1
and such that {S £ (p)|pe R} is closure preserving for every 1.
Proof. Letting d(z,2)=0, d(x,y)= -1 (x%y) for the
log; o(x, ¥)

metric o(x,y) in the theorem, we get a metric d(x,y) satisfying the
condition in this corollary.

Corollary 2. A metric space R has dimension=<mn if and only if
it admits a topology-preserving metric such that dim B[~ {S1 (p)|pe A}]
%

<n—1 (or dim B[V{S%(p)|peA}]§n——1), 1=1,2,- -+ for every subset
A of R.
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