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76. On the Fundamental Theorem of the Galois Theory
for Finite Factors

By Masahiro NAKAMURA*) and Zir TAKEDA**)

(Comm. by K. KUNUGI, M.J.A., June 13, 1960)

In the previous note [6, it is proved that a Galois theory holds
true for finite factors under rather strong conditions. The present note
will simplify the proof and clarify the relations of the previous conditions.

1o Following after the terminology of J. Dixmier 1, it is assumed
that

(1) A is a continuous finite factor acting standardly on a separable
Hilbert space H.

According to the representation theory of operator algebras (cf.
[_lJ), (1) implies that H can be seen as the completion of the prehil-
bert space A equipped with the usual inner product <al b:> =r(ab*)
by the standard trace , in which 1 becomes the trace element of H.
Under these circumstances, if G satisfies
(2) G is an enumerable group of outer automorphisms of A,
then the following lemma is proved as a sharpening of [_6, (1)"

LEMMA 1. There exists a unitary representation u of G on H
such as

) x-u*xu,
where x means the action of g on xA.

Although the lemma is proved already by I.E. Segal [7, Theorem
5.3, a sketch of the proof will be given for the sake of convenience.
Naturally, the representation u is defined by
( a au=a.
Since

< ag] bO :> -r(aqb*)-r(ab*) <a b >,
u is a unitary operator for each g. Furthermore

for all aA implies that g-->u is a unitary representation of G on H.
Finally

buau=bq- au=(baq)-baq
implies (3).

LEMMA 2. Defining by

(5) x’--u2x’u for x’A,
G can be also considered as a group of outer automorphisms on A’.

*) Osaka Gakugei Daigaku.
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The proof of the lemma is essentially the same as 6, Lemma 1.
Since

ax’ au* x’u u* a-x u-u* x’a-u-u* x’%a,
for each a eA and x’ cA’, g conserves A’, or (5)gives an automorphism
on A’. If it is inner, then u*x’u--w’*x’w’ for all x’eA’ by a unitary
w’eA’, whence w’u* commutes with each x’eA’, or w’u*eA, which is
a contradiction since x-w*xw for all xeA by w--w’u*eA.

LEMMA 3. The set B of all elements of A which are invariant
under G forms a yon Neumann subalgebra of A. The commutor B’
of B is generated by A’ and {u] geG}.

The first half of the lemma is obvious. If C’ is the von Neumann
algebra generated by A’ and [ulgeG}, it is clear that C’ contains A’
and is contained in B’. Hence the commutor C of C’ contains B and
is contained in A. Therefore, each element c of C belongs to A and
commutes with each uq, whence c belongs to B, that is, C=B. This
shows C’= B’.

LEMMA 4. If the commutor B’ of B in Lemma 3 satisfies
(6) B’ is a finite factor,
then u is orthogonal to A’ in the sense r’(ua’)--O for each a’eA’ and
gl, where r’ is the standard trace of B’.

It is to be noted that (6) implies at once
(7) B is a factor,
while the converse implication is not true in general which will be seen
by an example of 4. Naturally, it is true that (7) implies (6)if the
finiteness of B’ is assumed.

To prove the lemma, the conditional expectation s conditioned by
A’ in the sense of Umegaki [8 will be employed. By (6), projects
B’ orthogonally onto A’. Hence to prove the lemma it suffices to show
that u-- 0 which follows from (5) by ua’-a’u for all a’ e A’ using
[4, Lemma 1].

The following theorem is a sharpening of [6, Lemmas 3-4"
THEOREM 1. If (6) is satisfied by B’, then B’ is algebraically

isomorphic to the crossed product GOA’ in the sense of 4.
If a finite form

__
ua=O for aeA’, then

] 0

implies r’( *aa )--0 by Lemma 4, whence a---0 for all g. This shows
that {uqlgeG} is linearly independent over A’ and that the uniqueness
.of the coefficient a of u. in the expression. This shows also by the
natural correspondence uaoga, that the finite forms are
algebraically isomorphic preserving the traces. Since two finite con-
tinuous factors are isomorphic if the metrically dense subalgebras are
isomorphic in the trace preserving fashion, the above argument shows
that B’ is isomorphic to GA’, which proves the theorem.
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COROLLARY 1. Only scalars commute with elements of A’ in B’,
that is, AB’ is the scalar multiples of the identity.

If b is an element of AB’ with the expression: b’-- ua, then
(5) implies a’a-aa for any a’ cA’ comparing the coefficients of b’a’
and a’b’ by virtue of Theorem 1, which implies a---0 for gl by [4,
Lemma 1] and a-a by a certain scalar a since A’ is a factor. This
proves the corollary.

COROLLARY 2. Each intermediate yon Neumann subalgebra be-
tween A’ and B’ is a subfactor of B’, consequently each yon Neumann
subalgebra between B and A is a subfactor of A.

If D is the algebra in the hypothesis, then the corollary follows
at once by DD’DB’AB’ and Corollary 1.

THEOREM 2. If (1), (2) and (6) are satisfied by A, B and G, then
the lattices of all subgroups of G and of all intermediate subfactors
B to A are dually isomorphic by the usual Galois correspondence.

This is now a direct consequence of Theorem 1, Corollary 1 and
[4, Theorems 2-3.

2. It seems that the outlook of Theorem 2 generalizes the previous
one in [6. However, the generalization is not substantial which will
be seen in the following

THEOREM 3. If (1) and (2) are satisfied by A and G, then (6)is
equivalent to
(8) G is finite.

The proof of the theorem will be divided into two lemmas.
LEMMA 5. Under the hypothesis of the theorem, (6) implies (8).
Suppose the contrary. Since B’ is algebraically isomorphic to

G)A’ by Theorem 1, there is a subspace M in GH such that M
belongs to the commutor of G)A’ and the restriction of G)A’ On
M is spatially isomorphic to B’. Let n be a natural number greater
than 1/dim M, where dim M means the relative dimension of M with
respect to (G)A’)’. Then n-fold copy L of M contains GH. Since
B’ on H is spatially isomorphic to G()A’ on M, the isomorphism carries
A’ (as a subfactor of B’) to a factor on M, whence the n-fold copy
A of A’ acts on L and the restriction of A on G)H is possible to
identify with 1 ()A’. Consequently, the commutor of A on L is iso-
morphic to I)A and is finite, since A’ is standard on H by the
assumption. On the other hand, by the definition of crossed product
G)A’, the commutor of I()A’ is isomorphic to Ioo)A, which is
infinite. This is impossible since A has the finite commutor on L
which contains GH.

LEMMA 6. Under the hypothesis of the theorem, (8) implies (6).
Let m be the order of G. If =,(g(l)//, then is a trace

element of I()A’ in GH which follows from the equality
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<(1 ()a’)I :> --1----E, <a’ 1>-- 1---,r’(a’l--r’(a’)
m

for a’eA’. If K is the closure of (IA’) in G@H, then for heG

1 0(la’)(hl) ,(g@l (ha’)--gh@a’=(1@a’)

belongs again K, whence K is invariant under G1 too. Hence K is
invariant under GA’, that is, K belongs to (GA’)’. Therefore, the
restriction C of GA’ on K is algebraically isomorphic to (GA’)
by 1, Prop. 2, p. 19.

The correspondence a’-l.a’eH(la’)eK for a’eA’ gives
a unitary isomorphism u between H and K and clearly it gives
(9) u*a’u-la’, u*uu-gl.
GA is the continuous finite factor generated by {la’, gl} on
GH, hence C is generated by the same generators on K. On the
other hand B’ has generators {a’, %} by Lemma 3. Thus B’ is spatially
isomorphic to C by (9) and so necessarily a finite factor.. Since every enumerable group, hence every finite group, is
representable isomorphically by a group of outer automorphisms of the
hyperfinite continuous factor by 5, the Galois correspondence of
Theorem 2 between a continuous finite factor and its finite Galois group
has effective meaning. Here, it will be shown that a theorem of M.
Goldman 2 gives an another example. Goldman proved, among others,
for a subfactor B of a continuous finite factor A if the relative dimen-
sion y of B with respect $o B’ is 1/2, then there is a unitary ueA
with u--I such that

) each aeA is uniquely expressible in
(10) a=b+ub, bB (i--1,2),
(ii) u is orthogonal to B in the sense r(ub)--0 for any be B, and
(iii) the automorphism xx conserves B where
(11) x =uxu.

It will be shown here that A is the crossed product of B by G
where G is the group of order 2 with the generating element u of
(11). If there is a unitary veB such as uxu-vxv* for all xeB, then
x--uxu=vxv* implies xv--vx for all xeB. Since B is a factor,
v is a scalar. Hence it is not less general to assume that v is the
identity. While uvu-vvv-v implies that v commutes with u, x--uxu
=uvxvu implies uvx=xuv for all xeB, whence uv-- by some scalar, or u=v, which contradicts Goldman’s theorem. Hence u of (11)
gives an outer automorphism of B. Since the natural correspondence
between A and GB gives an algebraic isomorphism preserving the
traces by (i) and (ii), the assertion follows immediately.
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Extending the action of u on B’ by (11), G becomes also a group
of automorphisms of B’ which preserves A’ in elementwise. It is
similar to the above that the auomorphism is outer. It is obvious
that there are no proper subgroups in G and no proper intermediate
subfactors between B and A by F4, Theorem 3, whence it can conclude
that by taking the commutors Goldman’s theorem gives an example
of the Galois theory for finite factors.

4. The Galois correspondence does not hold in general for an
infinite group of outer automorphisms. We show this fact by an example.
In the previous note [5, we have constructed a group of outer auto-
morphisms of the hyperfinite continuous factor which is isomorphic to
a previously given enumerably infinite group G. Using the same nora-
tions in [5, we shall show the construction in brief. At first we con-
struct a measure space X and a measure preserving ergodic group F
of transformations acting on X relating to the group G. The same
measure space has been already utilized in [3 and Murray and von
Neumann have shown that the group G itself is represented as a meas-
ure preserving ergodic group of transformations on X [3, pp. 794-796.
As a consequence of this fact, every element g eG defines an auto-
morphism of the commutative yon Neumann algebra M composed of
all bounded measurable functions defined on X. On the other hand,
F is, by the definition, the family of functions -[y on G satisfying

if g belongs to a finite subset (g, g.,..., g) of G,(12) ’"- 0 otherwise.
(In the below, of (12) will be denoted by y(g, g,..., g).) This F
becomes a commutative group by the group operation

(13) T+T’-- ET+T] (mod. 2) for T- [T], "-- [T].
Then, putting Tgo(gl, g.,. ., gn)--T(gogl, gog.," ", gogn), every go e G defines
an automorphism of the group F. The actions of go eG upon M and
F are extended to an automorphism on the hyperfinite continuous
factor A constructed by the Murray-von Neumann methocl for measure
space X and its transformation group F. We have shown in [5] that
if g0@ 1 the automorphism is outer. In the below we shall show that
the, invariant elements under every automorphism effected by g G
are only scalar multiples of the identity. In fact, since the factor A
is nothing but the crossed product GQM (cf. [4, Theorem 4]), every
element aeA is expressed symbolically

Then the image of a effected by the automorphism go is given by
a-]r T ()m. Hence, if a0- a,

X], g," ", gn) (R) m%,...., T(gog , ", gog ) (R)
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i.e. mr(0,,...,0)=m(,,...,). Let us denote by Ilmr ]],. the L.-norm of

m with respect to the measure defined on X. Then

Now we denote the standard trace of A by r. Then
(14) v(a*a)=Er [I II <
As G is enumerably infinite, unless a finite set (g, g,..., g,) coincides
with the empty set 0, for infinitely many g, finite sets {(gg, gg,...,
gg)} are mutually different. Hence to be satisfied the condition (14)
by a, mr(,...,)=0. Thus an invariant element under every auto-
morphism g eG has the form ()m(. As

mr--mr for every g eG. Because G acts ergodically on X,
must be a constant, that is, the invariant element under every auto-
morphism gG is the scalar multiple of the identity.

In the above discussion, A is always the hyperfinite continuous
factor and G is arbitrary, whence it is hopeless to suppose that the
Galois correspondence holds true for all enumerable infinite groups.
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