99. A Note on Subdirect Decompositions of Idempotent Semigroups

By Miyuki Yamada
Shimane University
(Comm. by K. Kunugi, m.J.A., July 12, 1960)

A subsemigroup B of the direct product $B_{1} \times B_{2} \times \cdots \times B_{n}$ of bands (i.e. idempotent semigroups) $B_{1}, B_{2}, \cdots, B_{n}$ is called a subdirect product of $B_{1}, B_{2}, \cdots, B_{n}$ if every i,

$$
\xi_{i}(B)=B_{i}
$$

where ξ_{i} is the i-th projection of $B_{1} \times B_{2} \times \cdots \times B_{n}$.
Let $\Re_{1}, \Re_{2}, \cdots, \Re_{m}$ be congruences on a band S. Then the set $S^{*}=\left\{\left(\varphi_{1}(a), \varphi_{2}(a), \cdots, \varphi_{m}(a)\right): a \in S\right\}$, where each φ_{i} is the natural homomorphism of S to S / \Re_{i}, becomes a subdirect product of $S / \Re_{1}, S / \Re_{2}, \cdots$, S / \Re_{m}. Such S^{*} is called the natural representation of S induced by $\Re_{1}, \Re_{2}, \cdots, \Re_{m}$, and denoted by $S / \Re_{1} \circ S / \Re_{2} \circ \ldots \circ S / \Re_{m}$. Especially, it has been shown by Birkhoff [1] that if $\Re_{1} \cap \Re_{2} \cap \cdots \bigcap \Re_{m}=0,{ }^{1)}$ then $S / \Re_{1} \circ S / \Re_{2} \circ \cdots \circ S / \Re_{m}$ is an isomorphic representation of S.

Another important type of subdirect product, which is often used in the study of bands, is spined product introduced by Kimura [2]:

Let $S_{1}, S_{2}, \cdots, S_{n}$ be bands having Γ as their structure semilattices. And let $\mathscr{D}_{i}: S_{i} \sim \Sigma\left\{S_{i}^{r}: \gamma \in \Gamma\right\}$, for each i with $1 \leqq i \leqq n$, be the structure decomposition of $S_{i}{ }^{2)} \quad$ Then, the set $S=\bigcup\left\{S_{1}^{r} \times S_{2}^{r} \times \cdots \times S_{n}^{r}: \gamma \in \Gamma\right\}$ becomes a subdirect product of $S_{1}, S_{2}, \cdots, S_{n}$. Such S is called the spined product of $S_{1}, S_{2}, \cdots, S_{n}$ with respect to Γ, and denoted by $S_{1} \bowtie S_{2} \bowtie$ $\cdots \bowtie S_{n}(\Gamma)$.

The main purpose of this paper is to present the following representation theorem which clarifies the relation between such two special kinds of subdirect product.

Theorem. Let S be a band, and $\mathfrak{D}: S \sim \Sigma\left\{S_{r}: \gamma \in I^{\prime}\right\}$ its structure decomposition. Let $\Re_{1}, \Re_{2}, \cdots, \Re_{n}, n \geqq \mathbf{2}$, be congruences on S.

If $\Re_{1}, \Re_{2}, \cdots, \Re_{n}$ satisfy

[^0](C. 1) $\Re_{1}, \Re_{2}, \cdots, \Re_{n} \leqq \mathfrak{D}$,
(C. 2) $\Re_{1} \cap \Re_{2} \cap \cdots \cap \Re_{n}=0$,
(C. 3) $\Re_{1} \cap \Re_{2} \cap \cdots \cap \Re_{i}$ and \Re_{i+1} are permutable for all i, $1 \leqq i \leqq n-1$,
(C.4) $\left(\Re_{1} \cap \Re_{2} \cap \cdots \cap \Re_{i}\right) \cup \Re_{i+1}=\mathfrak{D}$ for all $i, 1 \leqq i \leqq n-1$,
then $S \cong S / \Re_{1} \bowtie S / \Re_{2} \bowtie \cdots \bowtie S / \Re_{n}(\Gamma) .^{3)} \quad$ Further, in this case S / \Re_{1} 。 $S / \Re_{2} \circ \cdots \circ S / \Re_{n}=S / \Re_{1} \bowtie S / \Re_{2} \bowtie \cdots \bowtie S / \Re_{n}(\Gamma)$.

The essential step towards establishing this theorem is the proof of

Lemma. Let S be a band, and $\mathfrak{D}: S \sim \Sigma\left\{S_{r}: \gamma \in \Gamma\right\}$ its structure decomposition. Let $\Re_{1}, \Re_{2}, \cdots, \Re_{n}, n \geqq 2$, be congruences on S.
(a) If $\Re_{1}, \Re_{2}, \cdots, \Re_{n}$ satisfy (C. 1), then for each i with $1 \leqq i \leqq n$ the structure decomposition of S / \Re_{i} is $S / \Re_{i} \sim \Sigma\left\{S_{\gamma} / \Re_{i}: \gamma \in \Gamma\right\}$.
(b) If $\Re_{1}, \Re_{2}, \cdots, \Re_{n}$ satisfy (C.1), (C. 3) and (C.4), then S / \Re_{1} 。 $S / \Re_{2} \circ \cdots \circ S / \Re_{n}=S / \Re_{1} \bowtie S / \Re_{2} \bowtie \cdots \bowtie S / \Re_{n}(\Gamma)$.

Proof. (a) Let φ_{i} be the natural homomorphism of S to S / \Re_{i}. Define a relation \mathfrak{D}_{i} on S / \Re_{i} as follows: $\varphi_{i}(x) \mathfrak{D}_{i} \varphi_{i}(y)$ if and only if $x^{\prime} \mathscr{D} y^{\prime}$ for some $x^{\prime} \in \varphi_{i}(x), y^{\prime} \in \varphi_{i}(y)$.

Then, \mathfrak{D}_{i} gives the structure decomposition of S / \Re_{i}. Denote by \bar{x} the congruence class containing $x \bmod \mathfrak{D}$, and by $\overline{\varphi_{i}(x)}$ the congruence class containing $\varphi_{i}(x) \bmod \mathscr{D}_{i}$.

Then, the mapping ψ_{i} defined by

$$
\psi_{i}: S / D_{\ni} \bar{x} \rightarrow \widetilde{\varphi_{i}(x)} \in S / \Re_{i} / \mathscr{D}_{i}
$$

is an isomorphism of S / \mathfrak{D} onto $S / \Re_{i} / \mathscr{D}_{i}$, and $\psi_{i}\left(S_{\gamma}\right)=S_{\gamma} / \Re_{i}$ for all $\gamma \in \Gamma$. Hence, the structure decomposition of S / \Re_{i} is $S / \Re_{i} \sim \Sigma\left\{S_{\gamma} / \mathfrak{\Re}_{i}: \gamma \in \Gamma\right\}$.
(b) Let $\left(\varphi_{1}(x), \varphi_{2}(x), \cdots, \varphi_{n}(x)\right)$ be an element of $S / \Re_{1} \circ S / \Re_{2} \circ \cdots$ $\circ S / \Re_{n}$. Since for each i with $1 \leqq i \leqq n-1 \varphi_{i}(x) \in S_{r} / \Re_{i}$ if $x \in S_{r}$, we have

$$
\begin{aligned}
\left(\varphi_{1}(x), \varphi_{2}(x), \cdots, \varphi_{n}(x)\right) \in & S_{r} / \Re_{1} \times S_{r} / \Re_{2} \times \cdots \\
& \times S_{r} / \Re_{n} \subset S / \Re_{1} \bowtie S / \Re_{2} \bowtie \cdots \bowtie S / \Re_{n}(\Gamma) .
\end{aligned}
$$

Conversely pick up an element $\left(\varphi_{1}\left(a_{1}\right), \varphi_{2}\left(a_{2}\right), \cdots, \varphi_{n}\left(a_{n}\right)\right)$ from $S / \Re_{1} \bowtie S / \Re_{2} \bowtie \cdots \bowtie S / \Re_{n}(\Gamma)$. Then, there exists S_{r} containing all a_{i}. Since $\Re_{1} \cup \Re_{2}=\mathfrak{D}$, we have $a_{1}\left(\Re_{1} \bigcup \Re_{2}\right) a_{2}$. Therefore, there exists an element x_{2} such that $a_{1} \Re_{1} x_{2}$ and $a_{2} \Re_{2} x_{2}$. Since $\left(\Re_{1} \cap \Re_{2}\right) \cup \Re_{3}=\mathfrak{D}$ and $\Re_{2} \leqq \mathfrak{D}$, we have $x_{2}\left(\left(\Re_{1} \cap \Re_{2}\right) \cup \Re_{3}\right) a_{3}$. Therefore, there exists an element x_{3} such that $x_{2}\left(\Re_{1} \cap \Re_{2}\right) x_{3}$ and $x_{3} \Re_{3} a_{3}$. Hence $a_{1} \Re_{1} x_{3}, a_{2} \Re_{2} x_{3}$ and $a_{3} \Re_{3} x_{3}$. Repeating $n-1$ times this process, we obtain an element x_{n} such that $a_{1} \Re_{1} x_{n}, a_{2} \Re_{2} x_{n}, \cdots, a_{n} \Re_{n} x_{n}$.

Thus $\varphi_{i}\left(x_{n}\right)=\varphi_{i}\left(a_{i}\right)$ for all i, and hence

$$
\begin{aligned}
& \left(\varphi_{1}\left(a_{1}\right), \varphi_{2}\left(a_{2}\right), \cdots, \varphi_{n}\left(a_{n}\right)\right) \\
= & \left(\varphi_{1}\left(x_{n}\right), \varphi_{2}\left(x_{n}\right), \cdots, \varphi_{n}\left(x_{n}\right)\right) \in S / \Re_{1} \circ S / \Re_{2} \circ \cdots \circ S / \Re_{n} .
\end{aligned}
$$

Accordingly, we conclude $S / \Re_{1} \circ S / \Re_{2} \circ \cdots \circ S / \Re_{n}=S / \Re_{1} \bowtie S / \not \Re_{2} \bowtie \cdots$

[^1]$\bowtie S / \Re_{n}(\Gamma)$.
Now we can easily prove our theorem by using this lemma and the result of Birkhoff [1].) In fact: Since $\Re_{1} \cap \Re_{2} \cap \cdots \cap \Re_{n}=0$, the relation $S \cong S / \Re_{1} \circ S / \Re_{2} \circ \cdots \circ S / \Re_{n}$ follows from the result of Birkhoff [1]. On the other hand, the relation $S / \Re_{1} \circ S / \Re_{2} \circ \cdots \circ S / \Re_{n}=S / \Re_{1} \bowtie$ $S / \Re_{2} \ltimes \cdots \bowtie S / \Re_{n}(\Gamma)$ follows from (b) of the lemma. Thus, we have $S \cong S / \Re_{1} \bowtie S / \Re_{2} \ltimes \cdots \bowtie S / \Re_{n}(\Gamma)=S / \Re_{1} \circ S / \Re_{2} \circ \cdots \circ S / \Re_{n}$.

Corollary. Let S be a non-commutative band, and $\mathfrak{D}: S \sim \Sigma\left\{S_{r}\right.$: $\gamma \in \Gamma\}$ its structure decomposition. Let $\Re_{1}, \Re_{2}, \cdots, \Re_{n}$ be congruences on S.

If $\Re_{1}, \Re_{2}, \cdots, \Re_{n}$ satisfy

```
            ( (C*.1) \(\Re_{1}, \Re_{2}, \cdots, \Re_{n}\) are comparable with \(\mathfrak{D}\) (i.e. \(\Re_{i} \geq \mathfrak{D}\) or \(\mathfrak{R}_{i} \leqq \mathfrak{D}\) for each \(i\) ),
(C*. 2) \(\Re_{1} \cap \Re_{2} \cap \cdots \cap \Re_{n}=0\), (C*.3) \(\Re_{1} \cap \Re_{2} \cap \cdots \bigcap \Re_{i}\) and \(\Re_{i+1}\) are permutable for all \(i\), \(1 \leqq i \leqq n-1\),
(C*.4) \(\left(\Re_{1} \bigcap \Re_{2} \bigcap \cdots \cap \Re_{i}\right) \cup \Re_{i+1} \geqq D\) for all \(i, 1 \leqq i \leqq n-1\),
```

then $S \cong S / \Re_{i_{1}} \bowtie S / \Re_{i_{2}} \bowtie \cdots \bowtie S / \Re_{i_{r}}(\Gamma)=S / \Re_{i_{1}} S / \Re_{i_{2}}{ }^{\circ} \cdots \circ S / \Re_{i_{r}}$ for some $\Re_{i_{1}}, \Re_{i_{2}}, \cdots, \Re_{i_{r}}$ with $1 \leqq i_{j} \leqq n$.

Application. Let S be a $\Gamma(\Delta)$-regular band, ${ }^{5)}$ and $\mathscr{D}: S \sim \Sigma\left\{S_{r}\right.$: $\left.\gamma \in I^{\prime}\right\}$ its structure decomposition. Define relations θ_{1}, θ_{2} on S as follows:
$\alpha \theta_{1} b$ if and only if $\left\{\begin{array}{l}a b=a \text { and both } a \text { and } b \text { are contained in a } \\ \text { common } S_{r}, \gamma \in \Delta, \\ \text { or } \\ a b=b \text { and both } a \text { and } b \text { are contained in a } \\ \text { common } S_{r}, \gamma \notin \Delta,\end{array}\right.$
$\alpha \theta_{2} b$ if and only if $\left\{\begin{array}{l}a b=a \text { and both } a \text { and } b \text { are contained in a } \\ \text { common } S_{r}, \gamma \notin \Delta, \\ a b=b \text { and both } a \text { and } b \text { are contained in a } \\ \text { common } S_{r}, \gamma \in \Delta .\end{array}\right.$

Then, θ_{1}, θ_{2} are congruences on S which satisfy (C) of the theorem. Hence, $S \cong S / \theta_{1} \bowtie S / \theta_{2}(\Gamma)=S / \theta_{1} \circ S / \theta_{2}$. This shows that a $\Gamma(\Delta)$-regular band is isomorphic to the spined product of a ($\Gamma, \Gamma \backslash \Delta$)-regular band and a (Γ, Δ)-regular band, and especially that a regular band is isomorphic to the spined product of a left regular band and a right regular band. ${ }^{6}$

[^2]
References

[1] G. Birkhoff: Lattice Theory, New York (1940).
[2] N. Kimura: The structure of idempotent semigroups (1), Pacific Jour. Math., 8, 257-275 (1958).
[3] D. McLean: Idempotent semigroups, Amer. Math. Monthly, 61, 110-113 (1954).
[4] M. Yamada: Certain congruences and the structure of some special bands, Proc. Japan Acad., 36, 408-410 (1960).

[^0]: 1) The ordering in the set Ω of all congruences on S is as follows: For $\mathfrak{X}, \mathfrak{B} \in \Omega$, $\mathfrak{A} \leqq \mathfrak{B}$ if and only if for $x, y \in S x \mathfrak{A} y$ implies $x \mathfrak{B} y$. The element 0 will denote the least element of Ω in the sense of this ordering.
 2) Let S be a band. Then, there exist a semilattice Γ and a disjoint family of rectangular subsemigroups of S indexed by $\Gamma,\left\{S_{r}: r \in \Gamma\right\}$, such that

 $$
 \begin{array}{ll}
 & S=\cup\left\{S_{\gamma}: \gamma \in \Gamma\right\} \\
 \text { and } \quad & S_{\alpha} S_{\beta} \subset S_{\alpha \beta} \quad \text { for } \alpha, \beta \in \Gamma
 \end{array}
 $$

 (see McLean [3]). In this case Γ is determined uniquely up to isomorphism, and called the structure semilattice of S. Further this decomposition, say \mathfrak{D}, gives a congruence called the structure decomposition of S and denoted by $S \sim \Sigma\left\{S_{\gamma}: \gamma \in \Gamma\right\}$.

[^1]: 3) The notation \cong means the term ' \cdots is isomorphic to \cdots '.
[^2]: 4) See p. 92.
 5) See Yamada [4].
 6) These assertions have been proved also by Yamada [4] and Kimura [2], respectively.
