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It is well known that a generalization of the Poisson summation
formula holds on some types of topological groups [1, 3. In this paper
we shall show that if the Poisson summation formula holds in some
sense on a locally compact topological ring then the ring is self-dual
as an additive group (Proposition 2). In this paper we shall use the
following notations:

R is a locally compact ring with a neutral element 1,
R/ is the additive group composed of all elements of R,
R is the dual group of R/,
g is a Haar-measure on R/.

To any measurable functions f(x), g(x), T(x) defined on R f, g
is the convolution of f and g on R,

Car (f) is the carrier of f and

Tf(x)-fT(xy)f(y)dz(y).

Finally 0 is the set of all continuous functions with compact
carrier defined on R.

1. Proposition 1. Let T(x) be a bounded continuous function
on G but be not constant O. If
( 1 T(f, g)--Tf. Tg for all f, g o,
then TeR.

Proof. Let us denote fu(x)=f(x+u) and P(--u)- Tfu(1) (Natu-
Tf(1)

rally P is defined to f such that Tf(1) 0.) By the hypothesis and
the definition of the convolution we have

Tfu. Tg-- T(fu g)-- T(f,g)-- Tf Tgu,
and then P(-- u) P(--u). Therefore we shall denote simply P(--u).

Concerning the function P(u) we get

2 P(u+ v) P(u)P(v),

for P(--u--v)-- T(f,f)/(1)= T(f,f)(1)__Tfu(1). Tf(1)=p(_u)P(_v)"
T(f,f)(1) T(f,.f)(1) Tf(1). Tf(1)

For any positive number s and any fe0 there exists an open
set of R such that

Tf(1)-- rf(1)l<=fiT()iif(+u)-f()ld()< s
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if U belongs to this set, because f() has the compact carrier. From
this and (2) we can conclude that P() is a continuous function.

By the definitions we have

Tf (1) P(-u) Tf(1) IF(--u) T(x)f(x)gl(x)

and

Tf (1)-JT(x)f(x+u)dt(x)

f
for allfeo. So we get

P(-- u) T(x) T(x-- u).
In particular
( 3 T(u)--cP(u)
where c= T(O). Then by the hypothesis (1)

cP(f, g)-- cPf P(g).
On the other hand by the property (2) we can prove

P(f* g) P(f)P(g).
Comparing these formulae

C---C2.
Because T is not constant 0, we get

c--1
and

T=P.
But by the hypothesis T is bounded, so we may claim TeR.

2. In this section we shall assume the followings.
(A) /, J are discrete subrings of R with countable elements.

(B) TeR and T(xy)--T(yx) for x, y in R.
(C) For any open subset U of R and any element a belonging

to U there exists a function f(x) in 0 whose carrier is contained in
U, Tf(n) is absolutely convergent and f(a) 0.*

(D) For any function which appears in the condition (C)
Tf(n)= F(n).

J nI

Applying (D) to the function T(mx)f(x) where m e J, we have, T(mn)f(n)=

_
Tf(n---m)= 2 Tf(n)= f(n).

If we choose as f such a function that the intersection of Car (f)
with I is {no} only and f(no)O, then T(mno)=l. Thus

Lemma 1. T(mn)=l if neI, meJ.
Conversely we can prove the following

Lemma 2. If T(mu) --1 for all meJ then u eI.
*) In (C) we may replace "open subset of R" by "neighbourhood of 0", for if f

satisfies the condition (C) then fu satisfies the same condition.
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Proof. f(n+u)- f(n), Tf(n)-- , T(--nu)Tf(n)
mJ mJ

Tf(n)-- f(n).
mJ neff

In a similar manner as in the proof of Lemma 1 we have uI.
Now we consider the homomorphism p from R into R:

p.R+R
u T(ux).

Then by Lemmas I and 2 the dual group of p(J) is R/I, and con-
sequently R/I is compact.

Proposition 2. If we assume besides te conditions (A), (B),
(C), (D),

(E) J=I and
(F) p is one-to-one correspondence,

then R is isomorphic to its dual group and R/I is isomorphic to the
dual group of I.

Proof. By the duality theorem p(I) is the dual group of R/I,
in other words I is the dual group of p(R)/p(I). On the other hand
I is the dual group of R/p(I). It means that R--p(R).

To decide whether p is one-to-one or not, the following lemma is
useful.

Lemma . If R satisfies the conditions (A), (B), (C) and (D),
then the kernel of p is an ideal of R and I with finite number of
elements.

Proof. Let us denote the kernel with H. Then T(hn)--I for all
neJ. Therefore hel. Clearly H is an ideal of I and R. On the
other hand our hypothesis shows

f(n)- Tf(n)

(U) Z
where is the Fourier transform of : If (H)-, then ](N)--0.
Since Tf(n) is absolutely convergent we get Tf(n)-O and so

J nJ
f(n)--O. But it is incompatible with the condition (C). Therefore

(g)<
Corollas. If R has no element with finite order without 0 and

satisfies the conditions (A), (B), (C), (D), then p gives a one-to-one

correspondence from R to R.
3. In this section we shall have a consequence of the precedings.

From now we shall assume besides (A), (B), (C), (D), (E), (F) that [

contains 1 (Condition (G)).
Proposition ]. f a function S(x) defined on R satisfies the
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same conditions as T(x), then there exists a unit element e of I such
that S(x)- T(ex).

Proof. Since S belongs to R there exists an element e of R such
that S(x)--T(ex), and interchanging the roles of S and T we have
also T(x)-S(e’x) with e’eR. From these formulae

T(x)-- T(ee’x),
therefore 1--ee’, because the mapping p is isomorphism. By the
hypothesis (D) for S and T,

] f(n)--_, Tf(n)
I I

--f(ne)v(e)

where fe(x)=f(xe). If IIe, with suitable choice of f we arrive at
a contradiction. So I=Ie-Ie’. This means e and e’ are units of I.
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