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I. Let M be a differentiable manifold of class C and of dimen-
sion n and assume that M has an affine connection. We denote co-
variant differentiation by Xe T with respect to this afline connection
by 7x provided that T is the tangent vector space at zM. Then to
each vector field V defined in a neighborhood of z there is attached
a homomorphism A of T into itself, provided that for X T, A(X)
is defined as usual to be--xV.

It is expected that there will exist certain correspondences be-
tween the geometric natures of vector field V and the algebraic natures
of A. The objective of the present paper is to study these corre-
spondences in a certain case which will be stated below and to arrange
the preliminaries of the author’s previous paper [1]) which has
determined both the metrics and the topological types of the com-
plete manifolds admitting a torse-forming vector field with some
singularities. It is interesting to note that these manifolds show
remarkable similarities, both in their metric aspects and in their
topological aspects, to the hypersurfaces of rotation which admit at
least one torse-forming vector field as is shown in the sequel.

Let f be a ditferentiable function defined in a neighborhood of
x and consider the germ defined by f which will be denoted by [f].
The total of If] forms a ring, denoted by . Let [] denote a
polynomial ring over coefficient ring . Further let Grad be a linear
map of module into T* which to each If] assigns the value at x
of the gradient covector of f.

If M has a Riemann metric g(X, Y) (X, Y T,), we can define a
linear map Pz(Z T) by Pz(X)--g(X, Z)/g(Z, Z)Z. Then one of the
simplest types of A is the one with A[P]. If we write

*--{flPvoGrad f]=Grad If]},
then * is a subring of and if R denotes the real number field,
then R also is a subring of in the natural sense. Let denote a
specialization: []] s() --> s(0) . Then -(*) is a subring of []
or of E[Pv] when ] is regarded as Pv and, similarly, -(R) is a
subring of them.

The vector fields discussed in the present paper are the gradient

1) Numbers in brackets refer to the reference at the end of the paper.
2) More precisely, A=ix(f(P)) for some f[l], where ix means a map assign-

ing the value at z of s to each Is].
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ones of the above-mentioned kind, especially the ones with Ave-(*).
This kind of vector field, what is called a torse-forming vector field,
has been investigated by S. Sasaki, K. Yano and other Japanese
mathematicians from another angle of the theory. It is worth while
to mention that this kind of vector field is very closely related to the
theory of relativity.

The main theorems in the present paper are as follows.
Theorem A. For a vector field V, Av is a symmetric operator

and belongs to -(*) in a neighborhood of a point of M if and
only if the following three conditions are satisfied: 1) For movement
in the transversal directions to V, there exists a fixed point in the
direction indicated by V. 2) V has a potential. 3) The trajectories
of V are geodesics, provided that V is assumed not to be a parallel
vector field.

Theorem B. Let D’--1/g(V, V) D, where D is the usual differential
operator acting on r]. Then there exists a vector field V for which
A is symmetric and belongs to -(R)D’-(R)in a neighborhood of
a point of M if and only if the metric form of M, by taking a suitable
coordinate system, can be expressed in one of the following forms:
1) ds"-sinh(cx’+d)ds+(dx’) 2) ds--sin2(cx"Wd)dsW(dx") 3) ds

where c and d in 1) and 2) are constants and x" is the n-th coordinate
of x and ds in each expression is a suitable metric form of dimension
n--1 that is independent of x".

Corollary. If M is an Einstein space, Ae[PJ implies Aoe-(R)
.,D’-(R), where a is a suitable function.

Although the above theorems still hold in a Finsler manifold,
some convections on terminology become necessary.

II. In this section we shall sketch the outline of a new global
theory of Finsler manifolds and fix the ways of using certain termi-
nology.

Let M be a differentiable manifold satisfying the second axiom
of separability and let be a principal bundle with base space M
and structural group O(n), where n--dim M. Then O(n) acts on the
total space B of from the right and consequently O(n--1), considered
to be a subgroup of O(n) in a natural way, does so likewise. Then
is called a Finsler bundle, if it satisfies these conditions:

1) An O(n--1)-invariant Riemann metric g(X, Y) (X, Ye T,,: The
tangent space at ueB) is given on B.

2) A bundle connection is given on in such a way as ,71(0)
(---(0)T) is orthogonal to the fibre through ueB.

3) There exist a principal bundle * over B with structural
group O(n)and a bundle map of * onto with pop--pop*, where
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p is the projection of and p* is that of *. By the use of , each
element of the group O(n--1) acting on B can be extended to a bundle
map of * onto itself. Then any O(n--1)-invariant bundle connection
on * is termed a Finsler connection on $.

Now consider a more restricted type of Finsler bundle and con-
nection. For that let be refined to the principal bundle associated to
the tangent bundle T(M) the structural group of which has en re-
duced to O(n). Horizontal spaces -’(0) determine a bundle ’ with base

B and group O(n) which is a subbundle of an O(n--space
2 /

bundle GL(n)-equivalent to T(B). Let " be the associated principal
bundle of ’. It is almost clear that there exists the ave-mentioned
type of map p of " onto . Moreover we sily see that there exists
a map ’ with commutative

an identity

" B/O(n--1) T(M)
where B/O(n--1)M is a bundle obtained from by dividing B by
O(n--1) and p" is the projection of T(M) and " is the natural map
of B onto B/O(n--1). If we write =’o", then is a fibre-pre-
serving map of into T(M). With this we can define a parallel
displacement of line elements in this way: Let 7 a curve on B
with end-point u. Then the parallel displacement along r of line-
element (u), by definition, is dpor(p(u)), provided that p is an
isomorphism of w(0) onto T given by p.

As well known there exists [a symmetric and metric connection
induced by the Riemann metric g(X, Y). It is hoped that the Finsler
connection determined by E. Cartan would obtained from this kind
of connection by the orthogonal projection onto the horizontal spaces.
Assume that a linear Finsler connection is given. Taking horizontal
frames (e$)=,,..., at each point u of B, we have de=eJ. We write
=w+, where is a differential form on the horizontal spaces
and one on the vertical spaces. Set e=p,(e$). Then
In the case of Cartan’s connection --*- In what follows we
write X=(dXWXw)Ye. Moreover if we denote by an absolute
differential of a line element with respect to w, then

III. In this section a correspondence tween the vectors and the
covectors in Finsler manifolds will treated of. Let T denote the
dual space of tangent space T. In a Riemannian manifold there
exists a canonical correspondence tween T and T, but in a Finsler
manifold it fails to appear without any restriction on vectors or
covectors. Actually this correspondence given by assigning to each
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XT a linear map of T into R: T Yg(pI(X), pI(Y))R can
be defined only for some part of T which will be denoted by S in
what follows. It is, nevertheless, this part of T that is of the
most importance, particularly from the topological point of view.
As is easily seen, XT belongs to S if and only if

,g(p,(X), p(Y))=0 for u with p(u)--x, and YT.
IV. A generalization of Theorem A and Theorem B is as follows.
Theorem A and Theorem B hold if V is restricted to a vector

field belonging to S at all the points in the neighborhood and / is
assumed as * in II.

V. It is well known that a torse-forming vector field is closely
connected with the conformal nature of the manifold. Then it will
be convenient that a general picture of conformal maps in Finsler
geometry is given here for later use.

The present author thinks that there exist two kinds of conformal
map for Finsler bundles geometrically, as is defined below.

1) A conformal map of the general kind is the usual one, that
is a bundle map h of a Finsler bundle into another Finsler bundle
2 satisfying this:

g2(p,,(dh(X)), p,,(dh(Y)))=exp (2a)g(p,(X), p,( Y)),
where a is an O(n--1)-invariant function defined on B, the total space
of , in general. In what follows, however, it is assumed O(n)-
invariant and identified with a function on M, the base space of .

2) A conformal map of the restricted kind, by definition, is a
conformal map of the general kind with (the gradient covector of a)eS.

We shall show how the latter ones arise from geometric problems
in the sequel.

VI. Let A(x)=io(A). Then we have
Proposition. A() is a differentiable function and
Proof. Let Av--f(Pv), where fe[]]. Let P+/- be the orthogonal

projection into the transversal directions to V. Then
P+/- Av=P+/- of(Pv) A(,)P+/-.

The differentiabilities of the left hand sid and P+/- of the right hand
side imply that of A(z).

VII. A note on [1]: Condition (iv) in the introduction of
ean be replaced by this one.

(iv’) Av is never reduced to the null-operator.
This eondition not onl induces the mutual isolation of points

with V=O, bu adds strong restriction to the indiees of V at such
points, as has been shown in [1]. Therefore the author’s previous
paImr [1] leaves something to be desired.
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