21. On the Extension Theorem of the Galois Theory for Finite Factors

By Zirô Takeda
Ibaraki University
(Comm. by K. Kunugi, m.J.A., Feb. 13, 1961)

1. We have shown that the fundamental theorem of the Galois theory remains true for finite factors [3] as same as for simple Noetherian rings. Subsequently, in this note, we shall discuss about the so-called extension theorem ${ }^{1)}$ for finite factors.

We denote by A a continuous finite factor standardly acting on a separable Hilbert space H and by G a finite group of outer automorphisms of A. Put B the set of all elements invariant by G. B is a subfactor of A. Now let C and D be two intermediate subfactors between A and B, then by the fundamental theorem of the Galois theory, there correspond the Galois groups E and F for C and D respectively. That is, E and F are subgroups of G by which C and D are shown as the sets of elements invariant by E and F respectively. Then we may give the extension theorem in the following form.

Theorem. Let σ be an isomorphism between C and D fixing every elements of B, then σ may be always extended to an automorphism of A which belongs to G.
2. We shall begin with some preliminaries. By A^{θ} we mean the set A equipped with the inner product $\left\langle a^{\theta} \mid b^{\theta}\right\rangle=\tau\left(a b^{*}\right)$ defined by the standard trace τ of A. As well known, A is faithfully represented on the completion Hilbert space of A^{θ}. The representation is spatially isomorphic to A acting on H, whence we may identify the representation with A and so A^{θ} with a dense subset of H. Thus $1^{\theta} \in H$ gives a trace element of A. The subspace $\left[1^{\circ} C\right]^{2)}$ of H belongs to C^{\prime}. Since $C^{\prime} \subset B^{\prime}$ it belongs B^{\prime} too. Hence its relative dimension $\operatorname{dim}_{B^{\prime}}\left[1^{\circ} C\right]$ with respect to B^{\prime} is meaningful.

As well known, the automorphism group G permits a unitary representation $\left\{u_{g}\right\}$ on H such that $x^{g}=u_{g}^{*} x u_{g}$ for $x \in A$. Furthermore, as shown in [3], putting $x^{\prime g}=u_{o}^{*} x^{\prime} u_{g}$ for $x^{\prime} \in A^{\prime}, G$ can be seen as a group of outer automorphisms of A^{\prime}. Hence we may construct the crossed product $G \otimes A^{\prime}$ of A^{\prime} by G, cf. [2]. This can be understand as a von Neumann algebra acting on a Hilbert space \boldsymbol{H} composed of all functions defined on G taking values in H. We show by $\sum_{g} g \otimes \varphi_{g}$ a function belonging to H which takes value φ_{g} at $g \in G$. Then $a^{\prime} \in A^{\prime}$

1) Refer to [5] for the theorem of rings with the minimum condition.
2) $\left[1^{\circ} C\right]$ means the metric closure of the set $\left\{1^{\circ} c \mid c \in C\right\}$.
and $g_{0} \in G$ define operators $a^{\prime \#}$ and $g_{0}^{\#}$ on H respectively such that

$$
\left(\sum_{g} g \otimes \varphi_{g}\right) a^{\prime \#}=\sum_{g} g \otimes \varphi_{g} a^{\prime}, \quad\left(\sum_{g} g \otimes \varphi_{g}\right) g_{0}^{\#}=\sum_{g} g g_{0} \otimes \varphi_{g} u_{\theta_{0}}
$$

Then the crossed product $G \otimes A^{\prime}$ is isomorphic to the factor B^{\prime} generated by $\left\{a^{\prime \#} \mid a^{\prime} \in A^{\prime}\right\}$ and $\left\{g_{0}^{\#} \mid g_{0} \in G\right\}$. It is not hard to see that B^{\prime} acts standardly on \boldsymbol{H} and its commutor \boldsymbol{B} is generated by $\left\{a^{b} \mid a \in A\right\}$ and $\left\{g_{0}^{b} \mid g_{0} \in G\right\}$ such that
$\left(\sum_{g} g \otimes \varphi_{g}\right) a^{j}=\sum_{g} g \otimes \varphi_{g} a^{g}, \quad\left(\sum_{g} g \otimes \varphi_{g}\right) g_{0}^{b}=\sum_{g} g_{0}^{-1} g \otimes \varphi_{g}, \quad$ (cf. [6]).
In the below we show $\left\{a^{\prime \prime} \mid a^{\prime} \in A^{\prime}\right\}$ and $\left\{a^{b} \mid a \in A\right\}$ by \boldsymbol{A}^{\prime} and \boldsymbol{A} respectively.
3. Lemma 1. $\operatorname{dim}_{B^{\prime}}\left[1^{\circ} C\right]=1 / m$ where m is the order of the group E.

Proof. We have shown in [3: Lemma 6] that the restriction of B^{\prime} on a subspace of \boldsymbol{H} having a relative dimension $1 / n$ (n is the order of the group G) with respect to the commutor \boldsymbol{B} of \boldsymbol{B}^{\prime} is spatially isomorphic to the commutor B^{\prime} of B acting on H.

Since B^{\prime} acts standardly on H, by the above notice and [1: p. 282, Prop. 2] we get $\operatorname{dim}_{B^{\prime}}\left[1^{\circ} B\right]=(1 / n) \operatorname{dim}_{B}\left[1^{\circ} B^{\prime}\right]$. Since $\left[1^{\circ} B^{\prime}\right]=H, \operatorname{dim}_{B}$ $\left[1^{\circ} B^{\prime}\right]=1$. Therefore $\operatorname{dim}_{B^{\prime}}\left[1^{\circ} B\right]=1 / n$. Similarly $\operatorname{dim}_{C^{\prime}}\left[1^{\circ} C\right]=1 / m$. As $C^{\prime} \subset B^{\prime}$,

$$
\operatorname{dim}_{B^{\prime}}\left[1^{\circ} C\right]=\operatorname{dim}_{C^{\prime}}\left[1^{\circ} C\right]=1 / m
$$

Analogously, for $D, \operatorname{dim}_{B^{\prime}}\left[1^{\theta} D\right]=1 / m^{\prime}$, where m^{\prime} is the order of F.
Lemma 2. If there exists an isomorphism σ between C and D such as stated in the theorem, $\left[1^{\circ} \mathrm{C}\right]$ is equivalent to $\left[1^{\circ} D\right]$ with respect to B^{\prime}, that is, $m=m^{\prime}$.

Proof. If we put $\left(1^{\circ} c\right) \bar{v}_{\sigma}=1^{\theta} c^{c}$ for $c \in C$, since by the definition of the inner product of A^{0},

$$
\left\langle 1^{\circ} c \mid 1^{\circ} c_{1}\right\rangle=\tau\left(c c_{1}^{*}\right),\left\langle 1^{\circ} c^{\sigma} \mid 1^{\circ} c_{1}^{\sigma}\right\rangle=\tau\left(c^{\sigma} c_{1}^{\sigma *}\right)=\tau\left(c c_{1}^{*}\right),
$$

whence \bar{v}_{0} gives an isometric linear mapping from $\left[1^{\circ} \mathrm{C}\right]$ onto $\left[1^{\circ} D\right]$. Now denote by $\left[1^{\circ} C\right]^{\perp}$ the ortho-complement of $\left[1^{\circ} \mathrm{C}\right]$. Then every $\varphi \in H$ is decomposed into $\varphi=\varphi_{0}+\varphi_{\perp}$ where $\varphi_{0} \in\left[1^{\circ} C\right], \varphi_{\perp} \in\left[1^{\circ} C\right]^{\perp}$. We define v_{σ} by $\varphi v_{o}=\varphi_{0} \bar{v}_{o}$, then v_{σ} is a partial isometric operator defined on H having the initial domain $\left[1^{\circ} \mathrm{C}\right.$] and the range $\left[1^{\circ} D\right]$.

Next we show $v_{\sigma} \in B^{\prime}$. Denote by ε the conditional expectation conditioned by C in the sense of Umegaki [7], which projects A onto C. Then $a^{\bullet}=a^{\bullet \theta}+a_{\perp}$, where $a_{\perp} \in\left[1^{\circ} C\right]^{\perp}$ for $a \in A$. Since $a^{\bullet} \in C$, we have

$$
a^{\theta} v_{\sigma}=a^{a \theta} \bar{v}_{\sigma}=a^{a 00}
$$

For $b \in B$,

$$
a^{a} v_{a} b=a^{a \sigma \theta} b=\left(a^{a \circ} b\right)^{\theta}=\left(a^{\circ} b\right)^{a \theta} .
$$

On the other hand we have

$$
a^{\theta} b v_{0}=(a b)^{\theta} v_{a}=(a b)^{\bullet \theta} \bar{v}_{a}=\left(a^{*} b\right)^{\theta} \bar{v}_{a}=\left(a^{\bullet} b\right)^{\circ \theta}
$$

Since A^{\prime} is dense in H, we get $v_{\sigma} b=b v_{0}$ i.e. $v_{\sigma} \in B^{\prime}$. q.e.d.
By Lemma 2 we know that there exist trace elements φ_{i} and ψ_{i} ($i=1,2, \cdots, m$) of C and D respectively in H, by which H decomposes orthogonally into such as
$H=\left[\varphi_{1} C\right] \oplus\left[\varphi_{2} C\right] \oplus \cdots \oplus\left[\varphi_{m} C\right]=\left[\psi_{1} D\right] \oplus\left[\psi_{2} D\right] \oplus \cdots \oplus\left[\psi_{m} D\right]$.
In this case we may assume $\varphi_{1}=\psi_{1}=1^{0}$. Putting $\left(\varphi_{i} c\right) u_{d}=\psi_{i} c^{0}$ for $c \in C$ ($i=1,2, \cdots, m$), we get a unitary operator u_{\circ} on H.

Lemma 3. $u_{o} c^{\circ}=c u_{\sigma}$ for every $c \in C$.
In fact, for $\varphi_{i} x(x \in C)$,

$$
\varphi_{i} x u_{o} c^{c}=\psi_{i} x^{*} c^{\sigma}=\psi_{i}(x c)^{\sigma}=\varphi_{i} x c u_{o} .
$$

As σ fixes every element of $B, u_{\sigma} b=b u_{\sigma}$, that is, $u_{\sigma} \in B^{\prime}$. Now let N be the set of all elements of B^{\prime} satisfying $y c^{\boldsymbol{c}}=c y$ for every $c \in C$. By Lemma 3, $u_{\sigma} \in N$.

Lemma 4. $N=C^{\prime} u_{0}=u_{0} D^{\prime}$.
Proof. For $y \in N, y c^{\sigma}=c y$ implies $c y u_{\sigma}^{*}=y c^{c} u_{\sigma}^{*}=y u_{\sigma}^{*} c$, whence $N u_{*}^{*} \subset C^{\prime}$, that is, $N \subset C^{\prime} u_{\sigma}$. Conversely, for $z \in C^{\prime \prime}, c z u_{\sigma}=z c u_{\sigma}=z u_{o} c^{\sigma}$ means $C^{\prime} u_{\sigma} \subset N$. Hence we get $N=C^{\prime \prime} u_{\sigma}$. On the other hand we have

$$
c^{\circ} u_{0}^{*} c^{\prime} u_{\sigma}=u_{0}^{*} c c^{\prime} u_{0}=u_{*}^{*} c^{\prime} c u_{0}=u_{*}^{*} c^{\prime} u_{c} c^{\circ} .
$$

This means $u_{\circ}^{*} C^{\prime} u_{\circ} \subset D^{\prime}$, i.e. $C^{\prime} u_{\circ} \subset u_{\circ} D^{\prime}$. By a similar calculation, $u_{\sigma} D^{\prime} \subset C^{\prime} u_{\sigma}$. Thus we get $N=C^{\prime} u_{\sigma}=u_{\sigma} D^{\prime}$.
4. Lemma 5. Any non-trivial subspace of \boldsymbol{H} does not reduce every element of \boldsymbol{B}^{\prime} and \boldsymbol{A}.

We say this fact briefly \boldsymbol{H} is irreducible with respect to \boldsymbol{A} and \boldsymbol{B}^{\prime}. This lemma is derived from the proof of [2: Theorem 1].

Since \boldsymbol{B}^{\prime} is algebraically isomorphic to \boldsymbol{B}^{\prime}, there is a subfactor \boldsymbol{D}^{\prime} of \boldsymbol{B}^{\prime}, which is isomorphic to D^{\prime}. Hence \boldsymbol{D}^{\prime} is algebraically isomorphic to the crossed product $F \otimes A^{\prime}$ of A^{\prime} by F and it is generated by \boldsymbol{A}^{\prime} and $\left\{f^{\#} \mid f \in F\right\}$ on \boldsymbol{H} (cf. [2: Theorem 2]. The group G is decomposed by the subgroup F into mutually disjoint cosets $G=g_{0} F \smile$ $g_{1} F \backsim \cdots \smile g_{l} F$ where $l=n / m-1$ and $g_{0}=1$. We show by K_{t} the subspace of \boldsymbol{H} composed of all functions which vanishes on whole G except a coset $g_{t} F$. Then, corresponding to the decomposition of G, \boldsymbol{H} decomposes into mutually orthogonal subspaces as follows: $\boldsymbol{H}=\boldsymbol{K}_{0} \oplus \boldsymbol{K}_{1} \oplus \cdots$ $\oplus \boldsymbol{K}_{t}$. Especially \boldsymbol{K}_{0} is identified with the space of all functions defined on \boldsymbol{F} taking values in H and so \boldsymbol{D}^{\prime} acts standardly on \boldsymbol{K}_{0}. Hence \boldsymbol{K}_{0} is irreducible with respect to \boldsymbol{A} and \boldsymbol{D}^{\prime} by Lemma 5. Furthermore we get

Lemma 6. Every $\boldsymbol{K}_{\mathbf{t}}$ is irreducible with respect to \boldsymbol{A} and \boldsymbol{D}^{\prime}.
Proof. $g_{i}^{-1 b}$ is a unitary operator belonging to \boldsymbol{B} and it satisfies $\boldsymbol{K}_{0} g_{i}^{-1 b}=\boldsymbol{K}_{i}$ and $g_{i}^{-1 b} a^{b}=a^{o d} g_{i}^{-1 b}$. Hence a subspace V of \boldsymbol{K}_{i} reduces every element of \boldsymbol{A} and \boldsymbol{D}^{\prime} if and only if a subspace $\boldsymbol{V g}_{\mathrm{t}}{ }^{\text {b }}$ of \boldsymbol{K}_{0} has the same property. Thus the irreducibility of \boldsymbol{K}_{0} leads to that of \boldsymbol{K}_{i}.

Let \boldsymbol{N} be the image of N by the isomorphism of \boldsymbol{B}^{\prime} onto \boldsymbol{B}^{\prime} and $\mathfrak{u}_{\mathrm{o}}$ be the operator corresponding to $u_{\boldsymbol{c}} \in B^{\prime}$ defined in §3 by this isomorphism. Put $\boldsymbol{N}^{\circ}=\left[\left(1 \otimes 1^{\circ}\right) N\right]^{3)}$ and $\boldsymbol{C}^{\prime \prime}=\left[\left(1 \otimes 1^{\circ}\right) \boldsymbol{C}^{\prime}\right]$.

Lemma 7. \boldsymbol{N}^{0} is irreducible with respect to \boldsymbol{A} and D^{\prime}.

[^0]Proof. As $N=u_{\sigma} D^{\prime}, \boldsymbol{N}^{\theta} \supset \mathfrak{u}_{\sigma}^{\theta} \boldsymbol{D}^{\prime}$, whence $\boldsymbol{N}^{\boldsymbol{\theta}}$ reduces every element of $\boldsymbol{D}^{\prime} . \quad N=C^{\prime} u_{\sigma}$ implies $\boldsymbol{N}^{\ominus} \subset\left[\boldsymbol{C}^{\prime \rho_{u_{\sigma}}}\right]$ and so $\left[\boldsymbol{N}^{\theta} \boldsymbol{A}\right]=\left[\boldsymbol{C}^{\prime \theta_{u^{\prime}}} \boldsymbol{A}\right]=$ $\left[\boldsymbol{C}^{\prime \theta} A \mathfrak{u}_{\sigma}\right] \subset\left[\boldsymbol{C}^{\prime \theta} \mathfrak{u}_{\sigma}\right]=\boldsymbol{N}^{\theta}$ because \boldsymbol{C}^{θ} reduces every element of \boldsymbol{A}. Hence N° is invariant by \boldsymbol{A} and \boldsymbol{D}^{\prime}. Since, for a given $d^{\prime} \in D^{\prime}$, there is a $c^{\prime} \in C^{\prime}$ such that $d^{\prime} u_{\sigma}^{*}=u_{0}^{*} c^{\prime}$, a subspace of V of \boldsymbol{N}^{θ} is invariant by \boldsymbol{A} and \boldsymbol{D}^{\prime} if and only if a subspace $V u_{\sigma}^{*}$ of $\boldsymbol{C}^{\prime \prime}$ is invariant by \boldsymbol{A} and \boldsymbol{C}^{\prime}. By Lemma 5, $\boldsymbol{C}^{\prime \prime}$, on which \boldsymbol{C}^{\prime} acts standardly, is irreducible with respect to \boldsymbol{A} and \boldsymbol{C}^{\prime}. Therefore $V=0$ otherwise $V=\boldsymbol{N}^{\boldsymbol{\theta}}$.

Lemma 8. Let p_{i} be the projection from \boldsymbol{H} onto \boldsymbol{K}_{i}, then $\boldsymbol{N}^{\theta} p_{i}=0$ or $\boldsymbol{N}^{0} p_{i}=K_{i}$.

Proof. Clearly p_{i} commutes with elements of \boldsymbol{D}^{\prime}. Furthermore $\left(\sum_{i, f} g_{i} f \otimes \varphi\right) a^{b} p_{i}=\sum_{f} g_{i} f \otimes \varphi a^{g_{i} f}=\left(\sum_{i, j} g_{i} f \otimes \varphi\right) p_{i} a^{b}$,
that is, p_{i} commutes with elements of A. Hence $N^{\theta} p_{i}$ is a subspace of K_{i} invariant by \boldsymbol{A} and \boldsymbol{D}^{\prime}. By Lemma 6, \boldsymbol{K}_{i} is irreducible with respect to A and D^{\prime} and so $N^{v} p_{i}=0$ or $N^{v} p_{i}=K_{i}$.

Lemma 9. If $\boldsymbol{N}^{\top} p_{i}=K_{i}, p_{i}$ gives a one-to-one bicontinuous mapping of \boldsymbol{N}^{0} onto K_{i}.

Proof. Since the kernel of p_{i} is a subspace invariant by \boldsymbol{A} and D^{\prime}, its intersection with \boldsymbol{N}^{0} is 0 or \boldsymbol{N}^{0} itself. By the assumption $\boldsymbol{N}^{\boldsymbol{\theta}} \boldsymbol{p}_{i}=\boldsymbol{K}_{i}, \boldsymbol{N}^{\boldsymbol{v}}$ is not in the kernel. Thus \boldsymbol{p}_{i} is one-to-one. The continuity of the inverse mapping p_{i}^{-1} follows from the well-known theorem of Banach space.

To simplify the notations, we denote by x_{N} and $x_{(i)}$ the restriction of x on N^{\bullet} and K_{i} respectively. Then, as seen from the proof of Lemma 8, we get

$$
\varphi p_{i}^{-1} a_{N}^{\prime \prime} p_{i}=\varphi a_{(i)}^{\prime \#}, \quad \varphi p_{i}^{-1} f_{N}^{\#} p_{i}=\varphi f_{(i)}^{\#}, \quad \varphi p_{i}^{-1} a_{N}^{b} p_{i}=\varphi a_{(i)}^{b}
$$

for $\varphi \in K_{i}$. g_{i}^{b} maps K_{i} isometrically onto K_{0} and by the definitions of operators $a^{\prime \#}, a^{b}, f^{\#}$, we get

$$
\varphi g_{i}^{-1 b} a_{(i)}^{\prime \#} g_{i}^{b}=\varphi a_{(0)}^{\prime \#}, \quad \varphi g_{i}^{-1 b} f_{(i)}^{\# \#} g_{i}^{b}=\varphi f_{(0)}^{\# \#}, \quad \varphi g_{i}^{-1 \vdash} a_{()}^{b} g g_{i}^{b}=\varphi a_{(0)}^{g_{i} b}
$$

for $\varphi \in \boldsymbol{K}_{0}$.
Lemma 10. There exists a \boldsymbol{K}_{i} such that $\boldsymbol{N}^{0}=\boldsymbol{K}_{i}$.
Proof. If there exist $p_{i}, p_{j}(i \neq j)$ such that $N^{0} p_{i} \neq 0, N^{\theta} p_{j} \neq 0$, we put $\varphi t=\varphi g_{i}^{-1 b} p_{i}^{-1} p_{j} g_{j}^{b}$ for $\varphi \in \boldsymbol{K}_{0}$. t maps K_{0} into itself and, by the relations stated before the lemma, it commutes with elements of $\boldsymbol{D}_{(0)}^{\prime}$ and satisfies

$$
a_{(0)}^{g_{0} b} t=t a_{(0)}^{q_{j} b} .
$$

Since t is in the commutor of $\boldsymbol{D}_{(0)}^{\prime}$, it permits an expression such that

$$
\varphi t=\varphi \sum_{f}\left(f^{b} a_{f}^{b}\right) \quad \text { for } \quad \varphi \in \boldsymbol{K}_{0} .
$$

Hence, as operators defined on K_{0}, we get

$$
\sum_{f}\left(f^{b} a_{f}^{b}\right) a^{a_{i} f}=a^{g_{j}} \sum_{f} f^{b} a_{f}^{b} \quad \text { i.e. } \quad \sum_{f} f^{b}\left(a_{f} a^{g_{i}}\right)^{b}=\sum_{f} f^{b}\left(a^{g_{j} f} a_{f}\right)^{b} .
$$

This means $a_{f} a^{\sigma_{i}}=a^{g_{j} f} a_{f}$. Since $g_{i} \notin g_{j} F$ and G is outer, $a_{f}=0$ and so $t=0$ by [2: Lemma 1]. This is a contradiction. Hence, there is only one p_{i} such that $\boldsymbol{N}^{\theta} p_{i} \neq 0$. In other words, $\boldsymbol{N}^{\bullet} \subset K_{i}$. By the irreducibility
of K_{i} with respect to \boldsymbol{A} and $\boldsymbol{D}^{\prime}, N^{0}=K_{i}$. q.e.d.
5. Proof of the Theorem. Since $u_{\sigma} \in B^{\prime}$, it has an expression such that $u_{\sigma}=\sum_{g} u_{g} a_{g}^{\prime}$. On the other hand $u_{\sigma} \in N$ and by Lemma $10, u_{\theta}^{\theta} \in K_{i}$. Therefore if $g \notin g_{i} F, a_{g}^{\prime}=0$. Hence u_{o} has an expression such that

$$
u_{o}=u_{g_{i}}\left(\sum_{f} u_{f} a_{g_{i} f}^{\prime}\right)=u_{o_{i}} d^{\prime}
$$

where $d^{\prime}=\sum_{f} u_{f} a_{g_{i} f}^{\prime} \in D^{\prime} . \quad d^{\prime}$ is a unitary operator and by Lemma 3

$$
c^{\sigma}=d^{*} u_{\nu_{i}}^{*} c u_{v_{i}} d^{\prime} .
$$

Thus

$$
u_{g_{i}}^{*} c u_{o_{i}}=d^{\prime} c^{\circ} d^{\prime *}=c^{\sigma}
$$

because $c^{\sigma} \in D$. This means that the isomorphism σ between C and D coincides with the action of g_{i} on C and so σ can be extended to the automorphism g_{\imath} of A.

REMARK. In the proof of theorem, we have not make any restriction for the choice of a representative g_{i} from the coset $g_{i} F$. Therefore we may say, as a version of the theorem, that there corresponds a coset $g_{i} F$ of G for the isomorphism σ stated in the theorem.

As a consequence of the theorem, we know that G exhausts the automorphisms of A which leave B elementwise fixed. Transferring to the commutors, this means that an inner automorphism of $G \otimes A^{\prime}$ which preserves A^{\prime} induces to A^{\prime} an automorphism belonging to G up to inner automorphisms of A^{\prime}. This is a theorem shown in the preceding paper [4] restricted within finite groups G.

References

[1] J. Dixmier: Les Algèbres d'Opérateurs dans l'Espace Hilbertien, Paris (1957).
[2] M. Nakamura and Z. Takeda: On some elementary properties of the crossed products of von Neumann algebras, Proc. Japan Acad., 34, 489-494 (1958).
[3] M. Nakamura and Z. Takeda: On the fundamental theorem of the Galois theory for finite factors, Proc. Japan Acad., 36, 313-318 (1960).
[4] M. Nakamura and Z. Takeda: On inner automorphisms of certain finite factors, Proc. Japan Acad., 37, 31-32 (1961).
[5] T. Nakayama: Automorphisms of simple, complete primitive and directly indecomposable rings, Ann. of Math., 55, 538-551 (1952).
[6] T. Turumaru: Crossed product of operator algebras, Tôhoku Math. Jour., 10, 355-364 (1958).
[7] H. Umegaki: Conditional expectation in an operator algebra, Tôhoku Math. Jour., 6, 177-181 (1954).

[^0]: 3) $1 \otimes 1^{0}$ means the function $\sum_{g} g \otimes \varphi_{g}$ such that $\varphi_{g}=0$ for $g \neq 1$ and $\varphi_{1}=1^{0}$.
