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21. On the Extension Theorem o[ the Galois Theory
or Finite Factors

By Zir5 TAKEDA
Ibaraki University

(Comm. by IL KUNUGI, M.J.&., Feb. 13, 1961)

1. We have shown that the fundamental theorem of the Galois
theory remains true for finite factors 3 as same as for simple
Noetherian rings. Subsequently, in this note, we shall discuss about
the so-called extension theorem for finite factors.

We denote by A a continuous finite factor standardly acting on
a eparable Hilbert space H and by G a finite group of outer auto-
morphisms of A. Put B the set of all elements invariant by G. B is
a subfactor of A. Now let C and D be two intermediate subfactors
between A and B, then by the fundamental theorem of the Galois
theory, there correspond the Galois groups E and F for C and D
respectively. That is, E and F are subgroups of G by which C and
D are shown as the sets of elements invariant by E and F respectively.
Then we may give the extension theorem in the following form.

THEOREM. Let a be an isomorphism between C and D fiing every
elements of B, then a may be always extended to an automorphism
of A which 5elongs to G.

2. We shall begin with some preliminaries. By A we mean the
set A equipped with the inner product (alb)--r(ab*) defined by the
standard trac r of A. As well known, A is faithfully represented
on the completion Hilbert space of A. The representation is spatially
isomorphic to A acting on H, whence we may identify the representa-
tion with A and so A with a dense subset of H. Thus 1 eH gives
a trace element of A. The subspace lC]2’ of H belongs to C’. Since
C’B’ it belongs B’ too. Hence its relative dimension dim,[lC
with respect to B’ is meaningful.

As well known, the automorphism group G permits a unitary rep-
resentation {u} on H such that z=u*zu for zeA. Furthermore,
as shown in [3, putting z’:u*x’u for x’ A’, G can be seen as a
group of outer automorphisms of A’. Hence we may construct the
crossed product G(R)A’ of A’ by G, cf. [2]. This can be understand
as avon Neumann algebra acting on a Hilbert space H composed of
all functions defined on G taking values in H. We show by
a function belonging to H which takes value at geG. Then a’eA’

1) Refer to [5] for the theorem of rings with the minimum condition.
2) [lC] means the metric closure of the set {lcl C}.



No. 2] On the Extension Theorem of the Galois Theory for Finite Factors 79

and gong define operators ’ and go on H respectively such that
(’, g(R),)’-- g(R)p,’, (--, gp)go=-]ggo(Uo.

Then the crossed product G(R)A’ is isomorphic to the factor B gener-
ated by {[A’} and {g0 goG}. It is not hard to see that B acts
standardly on H and its commutor B is generated by [alaA} and
{g0 g0 G} such that

In the below we show {a’*la’ cA’} and {alaeA} by/Y and A respect-
ively.

3. LEM. 1. dim, [IC] 1/m where m is the order ofShe group E.
Proof. We have shown in [3: Lemma 6] that the restriction of

B’ on a subspace of H having a relative dimension 1In (n is the order
of the group G) with respect to the commutor B of B is spatially
isomorphic to the commutor B’ of B acting on H.

Since B acts standardly on H, by the above notice and [1: p. 282,
Prop. 2] we get dim,[lB]--(1/n) dim[l’B’]. Since [I’B’] =H, dim
[I’B’] 1. Therefore dim, [I’B]-- 1In. Similarly dim, [ICJ- 1/m.
As C’ B’,

dim, EI’C-J =dimo,, El’C] 1/m. q.e.d.
Analogously, for D, dim, [I’D]----1/m’, where m’ is the order of F.
LEMMA 2. If there eists an isomorphism a between C and D

such as staed in $he theorem, El’C] is equivalent to El’D] wi$h

respect to B’, that is, m=m’.
Proof. If we put (1’c)o--1’" for cC, since by the definition of

the inner product of
(l’c lc,)=r(cc,*),

whence . gives an isometric linear mapping from [1’C] onto [I*D].
Now denote by [I*CJ +/- the ortho-complement of [1’C]. Then every
eH is decomposed into =0++/- where oe[l’C], +/-eEl’CJ +/-. We
define vo by Vo-o., then v. is a partial isometric operator defined
on H having the initial domain [1’C] and the range [I’D].

Next we show voeB’. Denote by e the conditional expectation
conditioned by C in the sense of Umegaki [7], which projects A onto
C. Then a’=a’*+az, where a+/- e [I’C] +/- for aeA. Since a" eC, we have

av, a’#, a’#.
For beB,

a’v.b--a"b (a"b)’ (a’b)".
On the other hand we have

a*bvo-- (ab)*v, (ab)’*, (a’b)’, (a’b)".
Since A’ is dense in H, we get v,b=bv, i.e. v, eB’. q.e.d.

By Lemma 2 we know that there exist trace elements
(i= 1, 2,..-, m) of C and D respectively in H, by which H decomposes
orthogonally into such as
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H= [m,C] [m,.e] ..- [m.C] [#,D] [#,] ... m [#.].
In this se we may assume 1=1=I’. Putting
(i=l, 2,..-, m), we get a uniry operator u, on H.
LMA 3. u,c" cu, for every c e C.
In fact, for ,z

As a fixes every element of B, u,b=bu,, that is, u, eB’. Now
let the set of all elements of B’ tfsfyng y’=y for every
c eC. By Lemma 3, u, eN.
L 4. N=C’u,:u,D’.
Prof. For ye, yc"=y implies yu=y’u =yuv, whence

Nu, that is, NC’u,. Converly, for
mns O’u,. Hence we get N=u,. On the other hand we have

This means C’.’, i.e. ’..’. By a simir caleu]aio-,
.’ C’. Thus we ge N=C’.:,D’.

ee dee of B A.
We y his act briefly s edce. This ]emma is deriv rom the proo of 2: Threm 1].
Since is a]gebra]]y imorphie to ’, there is a subfaetor
o B, which is isomorphic to ’. Hence i a]gebrai]]y iso-

morphic to the crossed product FA’ of A’ by and it is generated
by A and {fJf} on H cf. 2: Theorem
decomposed by he subgroup into mutually dsjoint cots
g;. gFwhere =/--1 a g0:1. We showyK the subspaee
of H com of a]] functions which vanish on whole except a
co g,. Then, corresnding the deeomsition of G, H dom-
ses into m,tua]ly orhogo] s,bs ollows: H=KK---K. Esially K0 is identified with thes of all functions defin
on F taking values in H and so D acts snrdly on K. Hence
is irrucible with resct to A and by Lemma 5. Furthermore
we get
LMA 6. Every K ieducible with respect to A and
Proof. gT is a unita orator longing to B and it tisfies

K7*=K, and gT*a=a,g;L Hence a supace V of K, ruces every
element of A and if and only if a suce Vg of K0 has the mine

prorty. Thus the irreducibility of K0 ls to tt of
Let N the ige of N by the isomorphm of B’ onto B and

u, the operator corresponding to u,B’ defin in fi3 by this iso-
morphism. Put N*= [(1@ I*)W]’ and ’= [(1
LSM 7. N is irreducie with rct to A and

3) 1)1 means the function g) such that =0 for gl and ql-’l0.
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Proof. As N=u,D’, N’:::)u:IT, whence N’ reduces every element
of /T. N=C’u, implies N’[C",-] and so
[C’A,][C’,] =N’u C’ reduces every element of A. Hence
N’ is invariant by A and . Since, for a given d’ eD’, there is a
c’ eC’ such that d’u u’, a suce of V of N’ is invariant by A
and if and only if a supace Vu of C’ is invariant by A aM C.
By Lemma 5, C’, on which C’ ts sndardly, is irrucible with
resct to A and C. Therefore V=0 otherwise

LEMMA 8. Let p be he oenfro H onto K, then
or

Proof. Clearly p commutes with elements of . Furthermore

that is, p commutes with elements of A. Hence Np is a subsce
of K invariant by A and . By Lemma 6, K is irrucible th
reset to A and and N’p=O or

LEPTA 9. If N*p:K, p gives a one-tone bicontinuous map-
ping of N* onto K.

Prof. Since the kernel of p is a subse invarnt by A and, its interaction with N* 0 or N* ielf. By the assumption
N*p:K, N* is not in the kernel. Thus p is one-to-one. The continuity
of the inverse mapping p7 follows from the well-known threm of
Banach space.

To simplify the notations, we denote by x and x,) the restriction
of x on N* and K resctively. Then, seen from the proof of
Lemma 8, we get

for K. g ps K isometrilly onto K and by the definitions
of orators a’a, a, fa, we get

for K.
LEMA 10. There exists a K such that
Prof. If there exist p, p(ij) such that N*p,O,

we put t=gTpTpg for eK. t maps K0 into itself and, by the
relations st fore the lemma, it commutes with elements of
and tisfies

Since $ is in te commutor of D0, it rmJts an expression such that
(fa ) or

Hence, as operators defined on Ko, we get

This means aa=aa. Snce ggF and G Js outer, a=0 and so
by [2: Lemma 1]. This is a contriction. Hence, there is only one
p such that Nep 0. In other words, NK. By the JrredcJbJ]Jty
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of K, with respect to A and /T, N’--K. q.e.d.
5. Proof of the Theorem. Since ’u. B’, it has an expression such

that u,=o uoa. On the other hand u,N and by Lemma 10, :K,.
Therefore if g g,F, a--0. Hence u, has an expression such that

where d’--,.u.a#D’, d’ is a unitary operator and by Lemma 3
c," =d’*u*cud’.

Thus ue,u--d’e,’d’*--’,
because c" D. This means that the isomorphism a between G and D
coincides with the action of g on G and so a can be extended to the
automorphism g, of A.

R.aK. In the proof of theorem, we have not make any
restriction for the choice of a representative g from the eoset gF.
Therefore we may say, as a version of the theorem, that there corre-
sponds a eoset gF of (7 for the isomorphism a stated in the theorem.

As a consequence of the theorem, we know that (7 exhausts the
automorphisms of A which leave B elementwise fixed. Transferring
to the commuters, this means that an inner automorphism of
which preserves A’ induces to A’ an automorphism belonging to
up to inner automorphisms of A’. This is a theorem shown in the
preceding paper [4J restricted within finite groups (7.
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