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37. A Note on the Entropy for Operator Algebras

By Masahiro NAKAMURA*) and Hisaharu UMEGAKI**)

(Comm. by K. KUNUGI, M.J.&., March 13, 1961)

Recently, I. E. Segal 9 established the notion of the entropy of
states of semi-finite von Neumann algebras. Segal’s entropy contains
the cases of the information theory, e.g.A.I. Khinchin 5], and the
quantum statistical mechanics due to J. von Neumann 8. The pur-
pose of the present note is to discover the background of Segal’s
definition basing on a study of the so-called convex operator functions
due to originally C. Loewner and extensively J. Bendat and S. Sherman
[1].

1. A real-valued continuous function f defined on an interval I
will be called operaor-core in the sense of Loewner-Bendat-Sherman
provided that
( 1 ) f(aa--k,Sb)<af(,a) ’!- fly(b),
for any hermitean operators a and b having their spectra in I, and
for any non-negative real numbers a and/ with a+/=l. According
to a theorem of Bendat-Sherman [1; Theorem 8.5], an analytic func-
tion,

( 2 ) f(2)= r,a’,

with the convergence radius R, is operator-convex for 12 ]<R if and
only if

f’/+"’(0)( 3 ) 3 ,._>_0,
,,=0 (i+k+2)

for any sequence of real numbers a and for all n.
L.M 1. 2 log (lq-2) is operator-conve for 2 I< 1.
Proof. Put f(2)=2 log (l+a). Clearly f satisfies (2) for R= 1.

Calculating, for k=2, 3 ...,
y’’(a)=(-)[(k-2) (+a)-’’-’’ +(k--) (+a)-’].

Putting 2=0, one has f’’(0)=(--1)(k--2) k for k=2, 3,--- Apply-
ing (3), one has, for any real numbers a,

2’/+’’(0), a,a , (-- 1)‘/ (i+k) (i+k+2)

,,=o iq-kq-1

Replacing (-1)a by a, it is non-negative, since the matrix,
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/1 1 1

1 1 1
C.= 2 3 n+l

\ n n+l 2n--1
is positive definite, according to the well-known Hilbert’s formula:

(4) det C.- 2v 3v...(n--1)v ]
n (n+l)!.-- (2n--l)

for n--l, 2,-.-, which proves the lemma.
It is noteworthy that Lemma 1 is implied also by an another

theorem of Bendat-Sherman [1; Theorem 3.4] since log (1+2) is clearly
operator-monotone.

LEMMA 2. (1-t-) log (1 +2) is operator-convex
It is clearly sufficient to show the lemma that the function,

( 5 ) g() (1--t- 2) log (1--!-2)--2,
is operator-convex for I i<1. By computation, (5) implies

g’()-- (--1)(k--2) (1 -2)--’,
for k=2,3,.... Since g is analytic for 121<:1 and satisfies (2), it is
also sufficient to prove the lemma that

",,__ g’//"(0) 1),/(-

for all n and for any real numbers a.
show the lemma that the matrix,

/1 1 1

(i+k)
(i+k+2)
Therefore, it is sufficient to

1
1-2 2-3 3-4 (n+l)(n+2)
1 1 1 1

D+-- 2-3 3.4 4----"" (n+2)(n+3)

\ (n+1)(n+2) (2n+1)(2n+2) /

is non-negative definite, for n--l, 2,.-.. It will be shown in the
next section that det D.:>0 for n--l, 2,..-

2. In this section, Lemma 2 is proved by establishing a deter-
minant formula in the following

LEMMA 3. For n--l, 2,...,
1 1 1
1-2 2-3 n(n+l)
1 1 1

(6) det D,= 2.3 3.4 (n+l)(n+2)

n(n+l) (2n--1)2n

[(n-- 1) (n-- 2) !..- 3 2 !]*n
(n+l)! (n+2)!..- (2n--l)! 2n!
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Our proof is an imitation of a proof which gives Hilbert’s formula
(4) from Cauchy’s formula:

1 1 1
i al . a. a

i I I

where ()-- II (--).

Proof. Put ()-- 1I (--),

II

1 1 1
(x,--a,)(x,--a_) (x,--a.)(x,--aa)

1 1
(X2-- al)(x2-- a2) (x2-- a2)(x2-- aa)

(x,--a,,)(x,--a,,/)
1

(x,,.--a,,)(x.--a,,+,)

1 1
(x,,,--a,)(x,,--a,.) (x,,,--a.)(x,,,--aa) (x,,--a,,)(x,,--a,,+)

II (x,--x) II (a,--a)
--C

Comparing with he order of he both sides of the above equa]iW, c
is known as a constant. Also comparing with he corresponding erms
of the expansions, c----1)-/(--1)-----1)-’. Therefore,
one has

( 7 ) D-- (-- 1) ’> +

H

that is,

and C=D. II p(x). Then we have

H (x,--a,) II (x,--a)... II (x,--a,)

H (x,--a,) H (x,--a,)... H

Since C is divisible by x--x for ik, i, k--l, 2,..., n, C is also divisi-
ble by H (x,--x)(ni>kl). Similarly, D is divisible by a,--a
for i--k@l. Hence C is divisible by

H (a,--a,)/ H (a,+--a),
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Finally, it is shown that (7) implies (6) assuming
( 8 ) x--a--i+k--1.
Since (8) implies at once x,--a-k+i--l--x--a, one has

x--x--i--k, a--a,--k--i, a,/--a,----1,
-I-1 -I-1

and p(x,)= II (x--a,)= II (i+k--1). Replacing them in (7), one has
=1 =1

,,,,,_,) n (i--k) H (k--i)
det D,,--D=(--1) "’>’ +1,>

+1

H (--1) H H (i+k--1)
k=l =1

__(_1)’(=’---)/(7,_,,_\,:(n-k) (n--l--k) .--2-1 .=II(n--k+l)
H [i(i+1).--(i+n)]

=(_1).(._) [(n--l)[ (n--2)l---3! 2l]2[n(n--1) -2-1]

n(n+l) (n-t-2)! ...(2n--I)[ 2nl
2! (n--l)!

[(n--I)!.--3! 2!]n!
(nT1)!(nT2)!...2n!

which proves the lemma.
]. In this section, the following theorem will be proved:
TEORE 1. f(2)= log 2 is operator-convex for 0, where f(O)

is defined by
( 9 ) f(O)--O.

The proof will be divided into two steps. At first, it will be
shown that f is operator-convex in [0,2). If a and b are two
hermitean operators having their spectra in 0, 2), then there exist
nets {a,} and {b,} which have their spectra in (0,2) and converge
strongly to a and b respectively. For each 8 Lemma 2 implies f(aa,
+bs)af(a,)Tflf(b,), where a, fl0 with a-l-/=l. By the continuity
of f(2) for 2 > 0 and by a lemma of Kaplansky [4], the mapping af(a)
is strongly continuous on 0a<:2, whence the above inequality implies
(1) for I----[0,2>.

Now let c and d are non-negative hermitean operators, and choose
a constant k:>0 such that a--c./k and b---d/k have their spectra in
[0, 2). By the above, a and b satisfy (1). Hence,

(ac+/d)[log (ac+d)-- log kJ

-[av log c+d log d--(ac+d) log

which implies that c and d satisfy (1) in place of a and b. This
completes the proof of the theorem.

4. Suppose that A is a semi-finite yon Neumann algebra in the
sense of J. Dixmier [3] having a normal trace or a gage r. If a is
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a non-negative hermitean member of A, then a log a belongs to A
too. Hence the following definition has a meaning:

D.FNITON 1. For a non-negative hermitean a of A, the entropy
of a is defined by
(10) H(a)----r(a log a).
If r is semi-finite, a is called to have the bounded entropy provided
that H(a) is finite. If r is finite, the entropy is always finite.

Since f(a)=a log a satisfies (1) by Theorem 1, and r is monotone,
the definition implies at once

THEOR.M 2. The entropy is concave on A/, that is,

(11) H(aa+b)aH(a)+flH(b),"
for non-negative hermiteans a and b of A, where a,0 and a+fl--1.

Moreover, the following theorem holds:
THEOREM 3. The entropy does not decrease after an application

of the conditional expectation e conditioned by a yon Neumann sub-
algebra B in the sense of [10, I and II]:2)

(12) H(agH(a).
Proof. Since 2 log 2 is operator-convex by Theorem 1 and sat-

isfies (9), theorems in [2] and [6] imply

(13) a loga[a log a].
By the monotonity of r, one has

H(a) --r(a log ae)--r([a log a]) --r(a log a)=H(a),
which is desired.

Since Segal [9] defined the entropy of a state a of A by the
Radon-Nikodym derivative a of a with respect to the trace r, the
above theorems imply the corresponding theorems of Segal.

To conclude the note, it may be observed with some interests,
that Theorem 3 allows us to introduce the following

D.FITON 2. If B is a von Neuman subalgebra of A, and if
a is a non-negative hermitean element of A, then the information
of a with respect to B is defined by

(14) I(a; B)--H(a)--H(a),
where a is the conditional expectation of a conditioned by B. By
Theorem 3, I(a; B) is non-negative.

1) By the same methods, we can prove the followings: For a state a of a C*-
algebra, we define Ho(a)=--a(a log a) (a:>0) and call it by a-entropy. If the e is an
expectation eo on a finite von Neumnn algebra in the sense of [10, III], then the in-
equalities (11) and (12) for H, in places of H also hold, where a is a normal state in
the tracelet space defined by the von Neumann subalgebra. More generally, if the e
is an expectation on a C*-algebra A in the sense of [7], then the same facts also hold
for any state a, invariant by , that is, a(a)=a(a) for all a A.

2) The subalgebra B is clearly defined such that the restriction of v onto B, is
also a gage. Therefore, v(a)=v(a) for all aeA (cf. [10, II]).
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