37. A Note on the Entropy for Operator Algebras

By Masahiro NAKAMURA^{*)} and Hisaharu UMEGAKI^{**)} (Comm. by K. KUNUGI, M.J.A., March 13, 1961)

Recently, I. E. Segal [9] established the notion of the entropy of states of semi-finite von Neumann algebras. Segal's entropy contains the cases of the information theory, e.g. A. I. Khinchin [5], and the quantum statistical mechanics due to J. von Neumann [8]. The purpose of the present note is to discover the background of Segal's definition basing on a study of the so-called convex operator functions due to originally C. Loewner and extensively J. Bendat and S. Sherman [1].

1. A real-valued continuous function f defined on an interval I will be called *operator-convex* in the sense of Loewner-Bendat-Sherman provided that

(1) $f(\alpha a + \beta b) \leq \alpha f(a) + \beta f(b),$

for any hermitean operators a and b having their spectra in I, and for any non-negative real numbers α and β with $\alpha + \beta = 1$. According to a theorem of Bendat-Sherman [1; Theorem 3.5], an analytic function,

$$f(\lambda) = \sum_{i=2}^{\infty} r_i \lambda^i,$$

with the convergence radius R, is operator-convex for $|\lambda| < R$ if and only if

$$(3) \qquad \qquad \sum_{i,k=0}^{n} \frac{f^{(i+k+2)}(0)}{(i+k+2)!} \alpha_i \alpha_k \geq 0,$$

for any sequence of real numbers α_i and for all n.

LEMMA 1. $\lambda \log(1+\lambda)$ is operator-convex for $|\lambda| < 1$.

Proof. Put $f(\lambda) = \lambda \log (1+\lambda)$. Clearly f satisfies (2) for R=1. Calculating, for $k=2, 3; \cdots$,

$$f^{(k)}(\lambda) = (-1)^{k} [(k-2)! (1+\lambda)^{-(k-1)} + (k-1)! (1+\lambda)^{-k}].$$

Putting $\lambda = 0$, one has $f^{(k)}(0) = (-1)^k (k-2)! k$ for $k=2, 3, \cdots$. Applying (3), one has, for any real numbers α_i ,

$$\sum_{i,k=0}^{n} \frac{f^{(i+k+2)}(0)}{(i+k+2)!} \alpha_{i} \alpha_{k} = \sum_{i,k=0}^{n} (-1)^{i+k} \frac{(i+k)!(i+k+2)}{(i+k+2)!} \alpha_{i} \alpha_{k}$$
$$= \sum_{i,k=0}^{n} (-1)^{i+k} \frac{\alpha_{i} \alpha_{k}}{i+k+1}.$$

Replacing $(-1)^i \alpha_i$ by α_i , it is non-negative, since the matrix,

^{*)} Osaka Gakugei Daigaku.

^{**)} Tokyo Institute of Technology.

$$C_{n} = \begin{pmatrix} \frac{1}{1} & \frac{1}{2} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\ & & & \\ \frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-1} \end{pmatrix},$$

is positive definite, according to the well-known Hilbert's formula:

(4)
$$\det C_n = \frac{[2!3!\cdots(n-1)!]^3}{n!(n+1)!\cdots(2n-1)!} > 0,$$

for $n=1, 2, \cdots$, which proves the lemma.

It is noteworthy that Lemma 1 is implied also by an another theorem of Bendat-Sherman [1; Theorem 3.4] since $\log (1+\lambda)$ is clearly operator-monotone.

LEMMA 2. $(1+\lambda) \log (1+\lambda)$ is operator-convex for $|\lambda| < 1$.

It is clearly sufficient to show the lemma that the function,

(5)
$$g(\lambda)=(1+\lambda)\log(1+\lambda)-\lambda$$
,

is operator-convex for $|\lambda| < 1$. By computation, (5) implies $g^{(k)}(\lambda) = (-1)^k (k-2)! (1+\lambda)^{-(k-1)}$,

for $k=2,3,\cdots$. Since g is analytic for $|\lambda|<1$ and satisfies (2), it is also sufficient to prove the lemma that

$$\sum_{i,k=0}^{n} \frac{g^{(i+k+2)}(0)}{(i+k+2)!} \alpha_{i} \alpha_{k} = \sum_{i,k=0}^{n} (-1)^{i+k} \frac{(i+k)!}{(i+k+2)!} \alpha_{i} \alpha_{k} \ge 0,$$

for all n and for any real numbers α_i . Therefore, it is sufficient to show the lemma that the matrix,

$$D_{n+1} = \begin{pmatrix} \frac{1}{1 \cdot 2} & \frac{1}{2 \cdot 3} & \frac{1}{3 \cdot 4} \cdots \frac{1}{(n+1)(n+2)} \\ \frac{1}{2 \cdot 3} & \frac{1}{3 \cdot 4} & \frac{1}{4 \cdot 5} \cdots \frac{1}{(n+2)(n+3)} \\ & & \\ & & \\ \frac{1}{(n+1)(n+2)} \cdots \frac{1}{(2n+1)(2n+2)} \end{pmatrix}$$

,

is non-negative definite, for $n=1, 2, \cdots$. It will be shown in the next section that det $D_n > 0$ for $n=1, 2, \cdots$.

2. In this section, Lemma 2 is proved by establishing a determinant formula in the following

LEMMA 3. For $n=1, 2, \cdots$,

(6) det
$$D_n = \begin{vmatrix} \frac{1}{1 \cdot 2} & \frac{1}{2 \cdot 3} \cdots & \frac{1}{n(n+1)} \\ \frac{1}{2 \cdot 3} & \frac{1}{3 \cdot 4} \cdots & \frac{1}{(n+1)(n+2)} \\ & & & \\ \frac{1}{n(n+1)} \cdots & \frac{1}{(2n-1)2n} \end{vmatrix} = \frac{[(n-1)!(n-2)!\cdots 3!2!]^3n!}{(n+1)!(n+2)!\cdots (2n-1)!2n!}$$

[Vol. 37,

Our proof is an imitation of a proof which gives Hilbert's formula (4) from Cauchy's formula:

$$D = \begin{vmatrix} \frac{1}{x_1 - a_1} & \frac{1}{x_1 - a_2} \cdots & \frac{1}{x_1 - a_n} \\ \frac{1}{x_2 - a_1} & \frac{1}{x_2 - a_2} \cdots & \frac{1}{x_2 - a_n} \\ \vdots & \vdots & \vdots \\ \frac{1}{x_n - a_1} & \frac{1}{x_n - a_2} \cdots & \frac{1}{x_n - a_n} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \frac{\prod_{i=1}^{n} (x_i - x_k)(a_i - a_k)}{\prod_{i=1}^{n} p(x_i)},$$
where $p(x) = \prod_{k=1}^{n} (x - a_k)$.
Proof. Put $p(x) = \prod_{k=1}^{n+1} (x - a_k)$,
$$D = \begin{vmatrix} \frac{1}{(x_1 - a_1)(x_1 - a_2)} & \frac{1}{(x_1 - a_2)(x_1 - a_3)} \cdots & \frac{1}{(x_1 - a_n)(x_1 - a_{n+1})} \\ \frac{1}{(x_2 - a_1)(x_2 - a_2)} & \frac{1}{(x_2 - a_2)(x_2 - a_3)} \cdots & \frac{1}{(x_2 - a_n)(x_2 - a_{n+1})} \end{vmatrix}$$

$$\frac{1}{(x_n-a_1)(x_n-a_2)} \frac{1}{(x_n-a_2)(x_n-a_3)} \cdots \frac{1}{(x_n-a_n)(x_n-a_{n+1})}$$

and
$$C = D \cdot \prod_{i=1}^{n} p(x_i)$$
. Then we have

$$C = \begin{vmatrix} \prod_{k \neq 1, 2}^{k \neq 1, 2} & \prod_{k \neq 2, 3}^{k \neq 1, 2} (x_1 - a_k) \cdots \prod_{k \neq n, n+1}^{k \neq 1, 2} (x_2 - a_k) & \prod_{k \neq 2, 3}^{k \neq 2, 3} (x_2 - a_k) \cdots \prod_{k \neq n, n+1}^{k \neq n, n+1} (x_2 - a_k) \\ & \dots & \dots & \dots \\ \prod_{k \neq 1, 2}^{k \neq 1, 2} (x_n - a_k) & \prod_{k \neq 2, 3}^{k \neq 2, 3} (x_n - a_k) \cdots \prod_{k \neq n, n+1}^{k \neq n, n+1} (x_n - a_k) \end{vmatrix}$$

Since C is divisible by $x_i - x_k$ for $i \neq k, i, k = 1, 2, \dots, n, C$ is also divisible by $\prod (x_i - x_k)$ $(n \ge i > k \ge 1)$. Similarly, D is divisible by $a_i - a_k$ for $i - k \ne 1$. Hence C is divisible by

$$\prod_{n+1 \ge i > k \ge 1} (a_i - a_k) / \prod_{n \ge k \ge 1} (a_{k+1} - a_k),$$

that is,

$$C = c \cdot \frac{\prod\limits_{n \ge i > k \ge 1} (x_i - x_k) \prod\limits_{n+1 \ge i > k \ge 1} (a_i - a_k)}{\prod\limits_{k=1}^n (a_{k+1} - a_k)} \cdot$$

Comparing with the order of the both sides of the above equality, c is known as a constant. Also comparing with the corresponding terms of the expansions, $c=(-1)^{n(n-1)}/(-1)^{n(n-1)/2}=(-1)^{n(n-1)/2}$. Therefore, one has

(7)
$$D = (-1)^{\frac{n(n-1)}{2}} \frac{\prod_{n \ge i > k \ge 1} (x_i - x_k) \prod_{n+1 \ge i > k \ge 1} (a_i - a_k)}{\prod_{k=1}^n (a_{k+1} - a_k) \prod_{i=1}^n p(x_i)}.$$

Finally, it is shown that (7) implies (6) assuming (8) $x_i - a_k = i + k - 1.$ Since (8) implies at once $x_k - a_i = k + i - 1 = x_i - a_k$, one has $x_i - x_k = i - k$, $a_i - a_k = k - i$, $a_{k+1} - a_k = -1$, and $p(x_i) = \prod_{k=1}^{n+1} (x_i - a_i) = \prod_{k=1}^{n+1} (i + k - 1)$. Replacing them in (7), one has det $D_n = D = (-1)^{\frac{n(n-1)}{2}} \prod_{\substack{n \ge i > k \ge 1 \\ k = 1}}^{n \ge i > k \ge 1} (i - k) \prod_{\substack{n+1 \ge i < k \ge 1 \\ i = 1 \\ k = 1}}^{n = i} (i - 1)^k \prod_{i=1}^{n = i + 1} (i + k - 1)$ $= (-1)^{\frac{n(n-1)}{2} + \frac{n(n+1)}{2} - n} \left[\left(\prod_{k=1}^{n-1} (n-k) \right) \cdot \left(\prod_{k=1}^{n-2} (n - 1 - k) \right) \cdots 2 \cdot 1 \right]^2 \prod_{k=1}^{n} (n - k + 1) \prod_{\substack{i=1 \\ i=1}}^{n} [i(i + 1) \cdots (i + n)]$ $= (-1)^{n(n-1)} \frac{[(n-1)! (n-2)! \cdots 3! 2!]^2 [n(n-1) \cdots 2 \cdot 1]}{n! (n+1)! \frac{(n+2)!}{2!} \cdots \frac{(2n-1)!}{(n-1)!} \frac{2n!}{n!}}$ $= \frac{[(n-1)! \cdots 3! 2!]^3 n!}{n!}$

$$\frac{1}{(n+1)!(n+2)!\cdots 2n!}$$

which proves the lemma.

3. In this section, the following theorem will be proved:

THEOREM 1. $f(\lambda) = \lambda \log \lambda$ is operator-convex for $\lambda \ge 0$, where f(0) is defined by

(9) f(0)=0.

The proof will be divided into two steps. At first, it will be shown that f is operator-convex in $[0, 2\rangle$. If a and b are two hermitean operators having their spectra in $[0, 2\rangle$, then there exist nets $\{a_i\}$ and $\{b_i\}$ which have their spectra in $\langle 0, 2 \rangle$ and converge strongly to a and b respectively. For each δ Lemma 2 implies $f(\alpha a_i + \beta b_i) \leq \alpha f(a_i) + \beta f(b_i)$, where $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. By the continuity of $f(\lambda)$ for $\lambda \geq 0$ and by a lemma of Kaplansky [4], the mapping $a \rightarrow f(a)$ is strongly continuous on $0 \leq a < 2$, whence the above inequality implies (1) for $I = [0, 2\rangle$.

Now let c and d are non-negative hermitean operators, and choose a constant k>0 such that a=c/k and b=d/k have their spectra in [0,2]. By the above, a and b satisfy (1). Hence,

$$\frac{1}{k}(\alpha c + \beta d) [\log (\alpha c + \beta d) - \log k]$$
$$\leq \frac{1}{k} [\alpha c \log c + \beta d \log d - (\alpha c + \beta d) \log k],$$

which implies that c and d satisfy (1) in place of a and b. This completes the proof of the theorem.

4. Suppose that A is a semi-finite von Neumann algebra in the sense of J. Dixmier [3] having a normal trace or a gage τ . If a is

a non-negative hermitean member of A, then $a \log a$ belongs to A too. Hence the following definition has a meaning:

DEFINITION 1. For a non-negative hermitean a of A, the entropy of a is defined by

(10) $H(a) = -\tau(a \log a).$

If τ is semi-finite, a is called to have the bounded entropy provided that H(a) is finite. If τ is finite, the entropy is always finite.

Since $f(a)=a \log a$ satisfies (1) by Theorem 1, and τ is monotone, the definition implies at once

THEOREM 2. The entropy is concave on A^+ , that is,

(11) $H(\alpha a + \beta b) \ge \alpha H(a) + \beta H(b),^{1}$

for non-negative hermiteans a and b of A, where α , $\beta \ge 0$ and $\alpha + \beta = 1$. Moreover, the following theorem holds:

THEOREM 3. The entropy does not decrease after an application of the conditional expectation \in conditioned by a von Neumann subalgebra B in the sense of [10, I and II]:²⁾

(12) $H(a^{\epsilon}) \geq H(a).$

Proof.¹⁾ Since $\lambda \log \lambda$ is operator-convex by Theorem 1 and satisfies (9), theorems in [2] and [6] imply

(13) $a^{\epsilon} \log a^{\epsilon} \leq [a \log a]^{\epsilon}.$

By the monotonity of τ , one has

 $H(a^{\epsilon}) = -\tau(a^{\epsilon} \log a^{\epsilon}) \ge -\tau([a \log a]^{\epsilon}) = -\tau(a \log a) = H(a),$ which is desired.

Since Segal [9] defined the entropy of a state σ of A by the Radon-Nikodym derivative a of σ with respect to the trace τ , the above theorems imply the corresponding theorems of Segal.

To conclude the note, it may be observed with some interests, that Theorem 3 allows us to introduce the following

DEFINITION 2. If B is a von Neuman subalgebra of A, and if a is a non-negative hermitean element of A, then the *information* of a with respect to B is defined by

(14)
$$I(a; B) = H(a^{\epsilon}) - H(a),$$

where a^{ϵ} is the conditional expectation of a conditioned by B. By Theorem 3, I(a; B) is non-negative.

¹⁾ By the same methods, we can prove the followings: For a state σ of a C*-algebra, we define $H_{\sigma}(a) = -\sigma(a \log a)$ $(a \ge 0)$ and call it by σ -entropy. If the \in is an expectation \in_{σ} on a finite von Neumann algebra in the sense of [10, III], then the inequalities (11) and (12) for H_{σ} in places of H also hold, where σ is a normal state in the tracelet space defined by the von Neumann subalgebra. More generally, if the \in is an expectation on a C*-algebra A in the sense of [7], then the same facts also hold for any state σ , invariant by \in , that is, $\sigma(a) = \sigma(a^{\epsilon})$ for all $a \in A$.

²⁾ The subalgebra B is clearly defined such that the restriction of τ onto B, is also a gage. Therefore, $\tau(a) = \tau(a^{\epsilon})$ for all $a \in A$ (cf. [10, II]).

References

- J. Bendat and S. Sherman: Monotone and convex operator functions, Trans. Amer. Math. Soc., 79, 58-71 (1955).
- [2] C. Davis: A Schwarz inequality for convex operator functions, Proc. Amer. Math. Soc., 8, 42-44 (1957).
- [3] J. Dixmier: Les Algèbres d'Opérateurs dans l'Espace Hilbertien, Gauthier-Villars, Paris (1957).
- [4] I. Kaplansky: A theorem on rings of operators, Pacific J. Math., 1, 227-232 (1951).
- [5] A. I. Khinchin: Mathematical Foundations of Information Theory, Dover, New York (1957).
- [6] M. Nakamura, M. Takesaki, and H. Umegaki: A remak on the expectations of operator algebras, Kodai Math. Sem. Rep., 12, 82-90 (1960).
- [7] M. Nakamura and T. Turumaru: Expectations in an operator algebra, Tôhoku Math. J., 6, 182-188 (1954).
- [8] J. von Neumann: Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton (1955).
- [9] I. E. Segal: A note on the concept of entropy, J. Math. Mech., 9, 623-629 (1960).
- [10] H. Umegaki: Conditional expectation in an operator algebra, I, Tôhoku Math. J., 6, 177-181 (1954); II, 8, 86-100 (1956); and III, Kōdai Math. Sem. Rep., 11, 51-64 (1959).