37. A Note on the Entropy for Operator Algebras

By Masahiro Nakamura*) and Hisaharu Umegaki**)

(Comm. by K. Kunugi, m.J.A., March 13, 1961)
Recently, I. E. Segal [9] established the notion of the entropy of states of semi-finite von Neumann algebras. Segal's entropy contains the cases of the information theory, e.g. A. I. Khinchin [5], and the quantum statistical mechanics due to J. von Neumann [8]. The purpose of the present note is to discover the background of Segal's definition basing on a study of the so-called convex operator functions due to originally C. Loewner and extensively J. Bendat and S. Sherman [1].

1. A real-valued continuous function f defined on an interval I will be called operator-convex in the sense of Loewner-Bendat-Sherman provided that

$$
\begin{equation*}
f(\alpha a+\beta b) \leqq \alpha f(a)+\beta f(b), \tag{1}
\end{equation*}
$$

for any hermitean operators a and b having their spectra in I, and for any non-negative real numbers α and β with $\alpha+\beta=1$. According to a theorem of Bendat-Sherman [1; Theorem 3.5], an analytic function,

$$
\begin{equation*}
f(\lambda)=\sum_{i=2}^{\infty} r_{i} \lambda^{i}, \tag{2}
\end{equation*}
$$

with the convergence radius R, is operator-convex for $|\lambda|<R$ if and only if

$$
\begin{equation*}
\sum_{i, k=0}^{n} \frac{f^{(i+k+2)}(0)}{(i+k+2)!} \alpha_{i} \alpha_{k} \geqq 0, \tag{3}
\end{equation*}
$$

for any sequence of real numbers α_{i} and for all n.
Lemma 1. $\lambda \log (1+\lambda)$ is operator-convex for $|\lambda|<1$.
Proof. Put $f(\lambda)=\lambda \log (1+\lambda)$. Clearly f satisfies (2) for $R=1$. Calculating, for $k=2,3 ; \cdots$,

$$
f^{(k)}(\lambda)=(-1)^{k}\left[(k-2)!(1+\lambda)^{-(k-1)}+(k-1)!(1+\lambda)^{-k}\right] .
$$

Putting $\lambda=0$, one has $f^{(k)}(0)=(-1)^{k}(k-2)!k$ for $k=2,3, \cdots$. Applying (3), one has, for any real numbers α_{i},

$$
\begin{aligned}
\sum_{i, k=0}^{n} \frac{f^{(i+k+2)}(0)}{(i+k+2)!} \alpha_{i} \alpha_{k} & =\sum_{i, k=0}^{n}(-1)^{i+k} \frac{(i+k)!(i+k+2)}{(i+k+2)!} \alpha_{i} \alpha_{k} \\
& =\sum_{i, k=0}^{n}(-1)^{i+k} \frac{\alpha_{i} \alpha_{k}}{i+k+1} .
\end{aligned}
$$

Replacing (-1$)^{i} \alpha_{i}$ by α_{i}, it is non-negative, since the matrix,

[^0]\[

C_{n}=\left($$
\begin{array}{cccc}
\frac{1}{1} & \frac{1}{2} & \cdots & \frac{1}{n} \\
\frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\
& \cdots & \cdots & \cdots \\
\frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2 n-1}
\end{array}
$$\right)
\]

is positive definite, according to the well-known Hilbert's formula:

$$
\begin{equation*}
\operatorname{det} C_{n}=\frac{[2!3!\cdots(n-1)!]^{3}}{n!(n+1)!\cdots(2 n-1)!}>0 \tag{4}
\end{equation*}
$$

for $n=1,2, \cdots$, which proves the lemma.
It is noteworthy that Lemma 1 is implied also by an another theorem of Bendat-Sherman [1; Theorem 3.4] since $\log (1+\lambda)$ is clearly operator-monotone.

Lemma 2. $(1+\lambda) \log (1+\lambda)$ is operator-convex for $|\lambda|<1$.
It is clearly sufficient to show the lemma that the function,

$$
\begin{equation*}
g(\lambda)=(1+\lambda) \log (1+\lambda)-\lambda \tag{5}
\end{equation*}
$$

is operator-convex for $|\lambda|<1$. By computation, (5) implies

$$
g^{(k)}(\lambda)=(-1)^{k}(k-2)!(1+\lambda)^{-(k-1)},
$$

for $k=2,3, \cdots$. Since g is analytic for $|\lambda|<1$ and satisfies (2), it is also sufficient to prove the lemma that

$$
\sum_{i, k=0}^{n} \frac{g^{(i+k+2)}(0)}{(i+k+2)!} \alpha_{i} \alpha_{k}=\sum_{i, k=0}^{n}(-1)^{i+k} \frac{(i+k)!}{(i+k+2)!} \alpha_{i} \alpha_{k} \geqq 0,
$$

for all n and for any real numbers α_{i}. Therefore, it is sufficient to show the lemma that the matrix,

$$
D_{n+1}=\left(\begin{array}{ccccc}
\frac{1}{1 \cdot 2} & \frac{1}{2 \cdot 3} & \frac{1}{3 \cdot 4} \cdots & \frac{1}{(n+1)(n+2)} \\
\frac{1}{2 \cdot 3} & \frac{1}{3 \cdot 4} & \frac{1}{4 \cdot 5} & \cdots & \frac{1}{(n+2)(n+3)} \\
& \cdots \cdots \cdots \cdots \cdots \\
\frac{1}{(n+1)(n+2)} & \cdots & \frac{1}{(2 n+1)(2 n+2)}
\end{array}\right)
$$

is non-negative definite, for $n=1,2, \cdots$. It will be shown in the next section that det $D_{n}>0$ for $n=1,2, \cdots$.
2. In this section, Lemma 2 is proved by establishing a determinant formula in the following

Lemma 3. For $n=1,2, \cdots$,
(6) $\operatorname{det} D_{n}=\left|\begin{array}{ccc}\frac{1}{1 \cdot 2} \frac{1}{2 \cdot 3} \cdots & \frac{1}{n(n+1)} \\ \frac{1}{2 \cdot 3} \frac{1}{3 \cdot 4} \cdots \frac{1}{(n+1)(n+2)} \\ \cdots \cdots \cdots \cdots \cdots \\ \frac{1}{n(n+1)} \cdots & \frac{1}{(2 n-1) 2 n}\end{array}\right|=\frac{[(n-1)!(n-2)!\cdots 3!2!]^{3} n!}{(n+1)!(n+2)!\cdots(2 n-1)!2 n!}$.

Our proof is an imitation of a proof which gives Hilbert's formula (4) from Cauchy's formula:

$$
\left|\begin{array}{ccc}
\frac{1}{x_{1}-a_{1}} & \frac{1}{x_{1}-a_{2}} \cdots \frac{1}{x_{1}-a_{n}} \\
\frac{1}{x_{2}-a_{1}} & \frac{1}{x_{2}-a_{2}} \cdots \frac{1}{x_{2}-a_{n}} \\
& \cdots \cdots \cdots \cdots \\
\frac{1}{x_{n}-a_{1}} & \frac{1}{x_{n}-a_{2}} \cdots \frac{1}{x_{n}-a_{n}}
\end{array}\right|=(-1)^{\frac{n(n-1)}{2} \frac{\prod_{i>k}\left(x_{i}-x_{k}\right)\left(a_{i}-a_{k}\right)}{\prod_{i=1}^{n} p\left(x_{i}\right)}, ~, ~, ~, ~}
$$

where $p(x)=\prod_{k=1}^{n}\left(x-a_{k}\right)$.
Proof. Put $p(x)=\prod_{k=1}^{n+1}\left(x-a_{k}\right)$,

$$
D=\left|\begin{array}{c}
\frac{1}{\left(x_{1}-a_{1}\right)\left(x_{1}-a_{2}\right)} \frac{1}{\left(x_{1}-a_{2}\right)\left(x_{1}-a_{3}\right)} \cdots \frac{1}{\left(x_{1}-a_{n}\right)\left(x_{1}-a_{n+1}\right)} \\
\frac{1}{\left(x_{2}-a_{1}\right)\left(x_{2}-a_{2}\right)} \frac{1}{\left(x_{2}-a_{2}\right)\left(x_{2}-a_{3}\right)} \cdots \frac{1}{\left(x_{2}-a_{n}\right)\left(x_{2}-a_{n+1}\right)} \\
\cdots \\
\frac{1}{\left(x_{n}-a_{1}\right)\left(x_{n}-a_{2}\right)} \frac{1}{\left(x_{n}-a_{2}\right)\left(x_{n}-a_{3}\right)} \cdots \frac{1}{\left(x_{n}-a_{n}\right)\left(x_{n}-a_{n+1}\right)}
\end{array}\right|,
$$

and $C=D \cdot \prod_{i=1}^{n} p\left(x_{i}\right)$. Then we have

$$
C=\left|\begin{array}{ccc}
\prod_{k \neq 1,2}\left(x_{1}-a_{k}\right) & \prod_{k \neq 2,3}\left(x_{1}-a_{k}\right) \cdots \prod_{k \neq n, n+1}\left(x_{1}-a_{k}\right) \\
\prod_{k \neq 1,2}\left(x_{2}-a_{k}\right) & \prod_{k \neq 2,3}\left(x_{2}-a_{k}\right) \cdots \prod_{k \neq n, n+1}\left(x_{2}-a_{k}\right) \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\prod_{k \neq 1,2}\left(x_{n}-a_{k}\right) & \prod_{k \neq 2,3}\left(x_{n}-a_{k}\right) \cdots \prod_{k \neq n, n+1}\left(x_{n}-a_{k}\right)
\end{array}\right|
$$

Since C is divisible by $x_{i}-x_{k}$ for $i \neq k, i, k=1,2, \cdots, n, C$ is also divisible by $\Pi\left(x_{i}-x_{k}\right)(n \geqq i>k \geqq 1)$. Similarly, D is divisible by $a_{i}-a_{k}$ for $i-k \neq 1$. Hence C is divisible by

$$
\prod_{n+1 \geq i>k \geq 1}\left(a_{i}-a_{k}\right) / \prod_{n \geq k \geq 1}\left(a_{k+1}-a_{k}\right),
$$

that is,

$$
C=c \cdot \frac{\prod_{n \geq i>k \geq 1}\left(x_{i}-x_{k}\right)_{n+1 \geq>k \geq 1}\left(a_{i}-a_{k}\right)}{\prod_{k=1}^{n}\left(a_{k+1}-a_{k}\right)}
$$

Comparing with the order of the both sides of the above equality, c is known as a constant. Also comparing with the corresponding terms of the expansions, $c=(-1)^{n(n-1)} /(-1)^{n(n-1) / 2}=(-1)^{n(n-1) / 2}$. Therefore, one has

$$
\begin{equation*}
D=(-1)^{\frac{n(n-1)}{2}} \frac{\prod_{n \geq i>k \geq 1}\left(x_{i}-x_{k}\right) \prod_{n+1 \geq i>k \geq 1}\left(a_{i}-a_{k}\right)}{\prod_{k=1}^{n}\left(a_{k+1}-a_{k}\right) \prod_{i=1}^{n} p\left(x_{i}\right)} . \tag{7}
\end{equation*}
$$

Finally, it is shown that (7) implies (6) assuming

$$
\begin{equation*}
x_{i}-a_{k}=i+k-1 \tag{8}
\end{equation*}
$$

Since (8) implies at once $x_{k}-a_{i}=k+i-1=x_{i}-a_{k}$, one has

$$
x_{i}-x_{k}=i-k, \quad a_{i}-a_{k}=k-i, \quad a_{k+1}-a_{k}=-1
$$

and $p\left(x_{i}\right)=\prod_{k=1}^{n+1}\left(x_{i}-a_{i}\right)=\prod_{k=1}^{n+1}(i+k-1)$. Replacing them in (7), one has

$$
\begin{aligned}
\operatorname{det} D_{n} & =D=(-1)^{\frac{n(n-1)}{2}} \frac{\prod_{n \geq i>k \geq 1}(i-k)}{\prod_{n=1}^{n}(-1)^{k} \prod_{i=1}^{n+1 \geq i>k \geq 1}} \prod_{k=1}^{n+1}(i+k-1) \\
= & (-1)^{\frac{n(n-1)}{2}+\frac{n(n+1)}{2}-n} \frac{\left[\left(\prod_{k=1}^{n-1}(n-k)\right) \cdot\left(\prod_{k=1}^{n-2}(n-1-k)\right) \cdots 2 \cdot 1\right]^{2} \prod_{k=1}^{n}(n-k+1)}{\prod_{i=1}^{n}[i(i+1) \cdots(i+n)]} \\
= & (-1)^{n(n-1)} \frac{[(n-1)!(n-2)!\cdots 3!2!]^{2}[n(n-1) \cdots 2 \cdot 1]}{n!(n+1)!\frac{(n+2)!}{2!} \cdots \frac{(2 n-1)!}{(n-1)!} \frac{2 n!}{n!}} \\
= & \frac{[(n-1)!\cdots 3!2!]^{3} n!}{(n+1)!(n+2)!\cdots 2 n!},
\end{aligned}
$$

which proves the lemma.
3. In this section, the following theorem will be proved:

Theorem 1. $f(\lambda)=\lambda \log \lambda$ is operator-convex for $\lambda \geqq 0$, where $f(0)$ is defined by

$$
\begin{equation*}
f(0)=0 \tag{9}
\end{equation*}
$$

The proof will be divided into two steps. At first, it will be shown that f is operator-convex in $[0,2\rangle$. If a and b are two hermitean operators having their spectra in $[0,2\rangle$, then there exist nets $\left\{a_{0}\right\}$ and $\left\{b_{b}\right\}$ which have their spectra in $\langle 0,2\rangle$ and converge strongly to a and b respectively. For each δ Lemma 2 implies $f\left(\alpha a_{j}\right.$ $\left.+\beta b_{s}\right) \leqq \alpha f\left(a_{i}\right)+\beta f\left(b_{s}\right)$, where $\alpha, \beta \geqq 0$ with $\alpha+\beta=1$. By the continuity of $f(\lambda)$ for $\lambda \geqq 0$ and by a lemma of Kaplansky [4], the mapping $a \rightarrow f(a)$ is strongly continuous on $0 \leqq a<2$, whence the above inequality implies (1) for $I=[0,2\rangle$.

Now let c and d are non-negative hermitean operators, and choose a constant $k>0$ such that $a=c / k$ and $b=d / k$ have their spectra in $[0,2\rangle$. By the above, a and b satisfy (1). Hence,

$$
\begin{aligned}
& \frac{1}{k}(\alpha c+\beta d)[\log (\alpha c+\beta d)-\log k] \\
\leqq & \frac{1}{k}[\alpha c \log c+\beta d \log d-(\alpha c+\beta d) \log k]
\end{aligned}
$$

which implies that c and d satisfy (1) in place of a and b. This completes the proof of the theorem.
4. Suppose that A is a semi-finite von Neumann algebra in the sense of J. Dixmier [3] having a normal trace or a gage τ. If a is
a non-negative hermitean member of A, then $a \log a$ belongs to A too. Hence the following definition has a meaning:

Definition 1. For a non-negative hermitean a of A, the entropy of a is defined by

$$
\begin{equation*}
H(a)=-\tau(a \log a) . \tag{10}
\end{equation*}
$$

If τ is semi-finite, a is called to have the bounded entropy provided that $H(a)$ is finite. If τ is finite, the entropy is always finite.

Since $f(a)=a \log a$ satisfies (1) by Theorem 1, and τ is monotone, the definition implies at once

Theorem 2. The entropy is concave on A^{+}, that is,

$$
\begin{equation*}
H(\alpha a+\beta b) \geqq \alpha H(a)+\beta H(b),{ }^{11} \tag{11}
\end{equation*}
$$

for non-negative hermiteans a and b of A, where $\alpha, \beta \geqq 0$ and $\alpha+\beta=1$.
Moreover, the following theorem holds:
Theorem 3. The entropy does not decrease after an application of the conditional expectation ϵ conditioned by a von Neumann subalgebra B in the sense of [10, I and II]:)

$$
\begin{equation*}
H\left(a^{\epsilon}\right) \geqq H(a) \tag{12}
\end{equation*}
$$

Proof. ${ }^{1)}$ Since $\lambda \log \lambda$ is operator-convex by Theorem 1 and satisfies (9), theorems in [2] and [6] imply

$$
\begin{equation*}
a^{\epsilon} \log a^{\epsilon} \leqq[a \log a]^{\epsilon} . \tag{13}
\end{equation*}
$$

By the monotonity of τ, one has

$$
H\left(a^{\epsilon}\right)=-\tau\left(a^{\epsilon} \log a^{\epsilon}\right) \geqq-\tau\left([a \log a]^{\epsilon}\right)=-\tau(a \log a)=H(a),
$$

which is desired.
Since Segal [9] defined the entropy of a state σ of A by the Radon-Nikodym derivative a of σ with respect to the trace τ, the above theorems imply the corresponding theorems of Segal.

To conclude the note, it may be observed with some interests, that Theorem 3 allows us to introduce the following

Definition 2. If B is a von Neuman subalgebra of A, and if a is a non-negative hermitean element of A, then the information of a with respect to B is defined by

$$
\begin{equation*}
I(a ; B)=H\left(a^{\epsilon}\right)-H(a), \tag{14}
\end{equation*}
$$

where a^{ϵ} is the conditional expectation of a conditioned by B. By Theorem 3, $I(a ; B)$ is non-negative.

[^1]
References

[1] J. Bendat and S. Sherman: Monotone and convex operator functions, Trans. Amer. Math. Soc., 79, 58-71 (1955).
[2] C. Davis: A Schwarz inequality for convex operator functions, Proc. Amer. Math. Soc., 8, 42-44 (1957).
[3] J. Dixmier: Les Algèbres d'Opérateurs dans l'Espace Hilbertien, Gauthier-Villars, Paris (1957).
[4] I. Kaplansky: A theorem on rings of operators, Pacific J. Math., 1, 227-232 (1951).
[5] A. I. Khinchin: Mathematical Foundations of Information Theory, Dover, New York (1957).
[6] M. Nakamura, M. Takesaki, and H. Umegaki: A remak on the expectations of operator algebras, Kōdai Math. Sem. Rep., 12, 82-90 (1960).
[7] M. Nakamura and T. Turumaru: Expectations in an operator algebra, Tôhoku Math. J., 6, 182-188 (1954).
[8] J. von Neumann: Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton (1955).
[9] I. E. Segal: A note on the concept of entropy, J. Math. Mech., 9, 623-629 (1960).
[10] H. Umegaki: Conditional expectation in an operator algebra, I, Tôhoku Math. J., 6, 177-181 (1954) ; II, 8, 86-100 (1956); and III, Kōdai Math. Sem. Rep., 11, 51-64 (1959).

[^0]: *) Osaka Gakugei Daigaku.
 **) Tokyo Institute of Technology.

[^1]: 1) By the same methods, we can prove the followings: For a state σ of a C^{*} algebra, we define $H_{\sigma}(a)=-\sigma(a \log a)(a \geqq 0)$ and call it by σ-entropy. If the \in is an expectation ϵ_{σ} on a finite von Neumann algebra in the sense of [10, III], then the inequalities (11) and (12) for H_{σ} in places of H also hold, where σ is a normal state in the tracelet space defined by the von Neumann subalgebra. More generally, if the \in is an expectation on a C^{*}-algebra A in the sense of [7], then the same facts also hold for any state σ, invariant by \in, that is, $\sigma(a)=\sigma\left(a^{\epsilon}\right)$ for all $a \in A$.
 2) The subalgebra B is clearly defined such that the restriction of τ onto B, is also a gage. Therefore, $\tau(a)=\tau\left(a^{\epsilon}\right)$ for all $a \in A$ (cf. [10, II]).
