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37. A Note on the Entropy for Operator Algebras

By Masahiro NAKAMURA® and Hisaharu UMEGAKI*®
(Comm. by K. KUNUGI, M.J.A., March 13, 1961)

Recently, 1. E. Segal [9] established the notion of the entropy of
states of semi-finite von Neumann algebras. Segal’s entropy contains
the cases of the information theory, e.g. A. I. Khinchin [5], and the
quantum statistical mechanics due to J. von Neumann [8]. The pur-
pose of the present note is to discover the background of Segal’s
definition basing on a study of the so-called convex operator functions
due to originally C. Loewner and extensively J. Bendat and S. Sherman
[1].

1. A real-valued continuous function f defined on an interval I
will be called operator-convex in the sense of Loewner-Bendat-Sherman
provided that
(1) Sflaa+Bb)<af(a)+Bf(b),
for any hermitean operators ¢ and b having their spectra in I, and
for any non-negative real numbers a and B with a+p8=1. According
to a theorem of Bendat-Sherman [1; Theorem 3.5], an analytic func-
tion,

(2) F=Zra,
with the convergence radius R, is operator-convex for | A|<R if and
only if

n i+k+2)

3 £41£42(0)
(3) (T hr2)]
for any sequence of real numbers a; and for all n.

LEMMA 1. 2log (14-2) is operator-convex for |2|<1.

Proof. Put f(A)=2log (14+4). Clearly f satisfies (2) for R=1.
Calculating, for £=2,3; ---,

FPQ=(—1)[(k—2)! A+ * P +(k—1)! A+ ].
Putting 2=0, one has f*(0)=(—1)*(k—2)! k for k=2,3,--- . Apply-
ing (3), one has, for any real numbers a;,,

2 SfEE200) _< e (R (G+E+2)

S W) = (—1
20 (i Fk+2)l P G+kt2)1
— - —1)tre X%
i,k2=o( ) 1+k+1

Replacing (—1)'a; by a,, it is non-negative, since the matrix,

a,a,=0,
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1 1 1

1T 2 n

1 1 1
c,=| 2 3 n+1

1 1 1

n n+l  2n—1

is positive definite, according to the well-known Hilbert’s formula:
_ [2!8l-c(m—1)!73

(4) det G DL - @)1

for n=1, 2,---, which proves the lemma.

It is noteworthy that Lemma 1 is implied also by an another
theorem of Bendat-Sherman [1; Theorem 3.4] since log (1+2) is clearly
operator-monotone.

LEMMA 2. (142)log (142) is operator-convex for |1|<1.

It is clearly sufficient to show the lemma that the function,
(5) 9()=(1+2) log (1+2)—2,
is operator-convex for |1|<1. By computation, (5) implies

¢OD=(~1)k—2)! 1+,
for k=2,3,--- . Since g is analytic for |1]<1 and satisfies (2), it is
also sufficient to prove the lemma that
n (i+l¢+2)(0) 2( )“k (i+k)!
(it k) T (i+k+2)!
for all n and for any real numbers a;,. Therefore, it is sufficient to
show the lemma that the matrix,

aiakgoy

1 1 1 1
1-2 2.3 34 (n+1)(n+2)

1 1 1 . 1
D,.,=|2-3 3-4 4.5 (n+2)(n+3)

1 LR ) 1
\(+D)(n+2)  (@n+1)2n+2)

is non-negative definite, for n=1,2,--- . It will be shown in the
next section that det D,>0 for n=1,2,--- .

2. In this section, Lemma 2 is proved by establishing a deter-
minant formula in the following

LeEmMA 3. For n=1,2,---,

11 1
1-2 2.3 n(n+1)
11 1

R S —1) ! (n—2)1...31 217!
(6) det D, =28 34 i) (,E(f:l)!lgnﬂ’:z)ﬁ).'(23_21)]!;:,-

..........

nntl)  (2n—1)2n



No. 3] A Note on the Entropy for Operator Algebras 151

Our proof is an imitation of a proof which gives Hilbert’s formula
(4) from Cauchy’s formula:

1 1 1
r—a, ,—a, T —a,
1 1 cee 1 atn-1) ‘E‘ (xi_xk)(ai_ak)
To—Qy To— A z—a, |=(—1 n ’
.......... ‘I=Ilp(xi)
1 1 1
xn_al xn'—ag x,,—a,,
where p(x)= kfI (x—a,).
=1
Proof. Put p(z)= ’;ff (@—a,),
=1
1 1 . 1
(z,—a,)(x,—a;) (2,— a,)(x, —as;) (%, —a, )@, —a,.y)
1 1 1

D=| @ a)(#:—0;) (o) (@—0y)  (Wa— @) (F2—pss)

1 1 1
(xn _al)(xn_ aZ) (xn - a2)(xn_ aa) (xn - an)(wn —Qps 1)
and C=D- ‘i'_'Il p(x;). Then we have

I (x,—a,) I (x,—a)--- II (v,—a,)
k1,2 k2,3 kn,n+1

C= b*l;[,z(xz—ak) bgs(xz—ak)’ . ME“ (x:—a,)

kg’g(w,.—ak) k*f,l’a(wn—ak)- . -Ml}_ﬂ(x,.—ak)

Since C is divisible by x,—=z, for ik, ¢, k=1, 2,---,n, C is also divisi-
ble by II (2;—,) (n=i>k=1). Similarly, D is divisible by a;,—a,
for i—k=1. Hence C is divisible by

I (a;—a) IO (a,.,—a),
nH1zi>k21 nzk21

that is,
oI (x,—=x) IO (a;—a,)

C=c n2i>E21 n+125>k21

,gl(a'k 11— 0y)

Comparing with the order of the both sides of the above equality, ¢
is known as a constant. Also comparing with the corresponding terms
of the expansions, ¢=(—1)**"Y/(—1)*"-P2=(—1)*»-1/2  Therefore,
one has

, I (@—x) IO (a,—a,)

n2i>kz1 n+12i>k21

L_I}l(ak 1) ‘I;Il o(x;)

( 7 ) D=(—1)n(n’—l
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Finally, it is shown that (7) implies (6) assuming
(8) z,—a,=i+k—1.
Since (8) implies at once z,—a,=k-+i—1=x,—a,, one has
z,—x,=1—k, a—a,=k—1, a,.,—a,=-—1,
and p(x,):;ﬁl(a:,—ai)=:ﬁl(i+k-—l). Replacing them in (7), one has
=1 =1

O (i—k) T (k—i)

D
n2i>k=1 n+12i>k21

T (—1) 1T T (i4-5—1)
k=1 i=1 k=1

det D,=D=(—1)""7

=(—1)"("5”*"‘"2”""[<:I=_Ii (=) (Tn—1-8) 21 [ fin—te+1)

}’_ilti(i+1)- - (i+m)]
—(—1ye-v =D (n=2)!---312T[n(n—1)- - -2-1]

21 T (n—1)! n!
_ [n—1)!...81213n!
T (n+1)!1(n+2)!---2n!
which proves the lemma.

3. In this section, the following theorem will be proved:

THEOREM 1. f(2)=2log 2 is operator-convex for A=0, where f(0)
18 defined by
(9) f(0)=0.

The proof will be divided into two steps. At first, it will be
shown that f is operator-convex in [0,2). If ¢ and b are two
hermitean operators having their spectra in [0,2), then there exist
nets {a,} and {b,} which have their spectra in (0,2) and converge
strongly to a and b respectively. For each é Lemma 2 implies f(aa,
+8b;) < af(a;)+ Bf(b,), where a, =0 with a+8=1. By the continuity
of f(2) for 2=0 and by a lemma of Kaplansky [4], the mapping a—f(a)
is strongly continuous on 0=<<e <2, whence the above inequality implies
(1) for I=[0,2).

Now let ¢ and d are non-negative hermitean operators, and choose
a constant k>0 such that a=c/k and b=d/k have their spectra in
[0,2). By the above, a and b satisfy (1). Hence,

-lk-(ac+13d)[10g (ac+pd)—log k]

’

g-}?[ac log ¢+ pd log d—(ac+ 8d) log k],

which implies that ¢ and d satisfy (1) in place of @ and b. This
completes the proof of the theorem.

4. Suppose that A is a semi-finite von Neumann algebra in the
sense of J. Dixmier [8] having a normal trace or a gage r. If a is
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a non-negative hermitean member of A, then aloga belongs to A
too. Hence the following definition has a meaning:

DEFINITION 1. For a non-negative hermitean a of A, the entropy
of a is defined by
(10) H(a)=—17(a log a).

If r is semi-finite, a is called to have the bounded entropy provided
that H(a) is finite. If r is finite, the entropy is always finite.

Since f(a)=a log a satisfies (1) by Theorem 1, and = is monotone,
the definition implies at once

THEOREM 2. The entropy is concave on A*, that is,

(11) H(aa+pb) = aH(a)+BH(),"
Jor mon-negative hermiteans a and b of A, where a, =0 and a+p=1.

Moreover, the following theorem holds:

THEOREM 8. The entropy does mot decrease after an application
of the conditional expectation € conditioned by a von Neumann sub-
algebra B in the semse of [10, I and II]:®
(12) H(a%)=H(a).

Proof.” Since 2log 2 is operator-convex by Theorem 1 and sat-
isfies (9), theorems in [2] and [6] imply
13) aflog a¢<[a log a]S.

By the monotonity of z, one has
H(a%)=—1(a%log a®)=—1([a log a]¢)= —(a log a)=H(a),
which is desired.

Since Segal [9] defined the entropy of a state ¢ of A by the
Radon-Nikodym derivative @ of ¢ with respect to the trace z, the
above theorems imply the corresponding theorems of Segal.

To conclude the note, it may be observed with some interests,
that Theorem 3 allows us to introduce the following

DEFINITION 2. If B is a von Neuman subalgebra of A, and if
a is a non-negative hermitean element of A, then the information
of a with respect to B is defined by
(14) I(a; B)=H(a%)—H(a),
where a€ is the conditional expectation of a conditioned by B. By
Theorem 3, I(a; B) is non-negative.

1) By the same methods, we can prove the followings: For a state ¢ of a C*-
algebra, we define H.(a)=—o(a loga) (¢ =0) and call it by g-entropy. If the € is an
expectation €, on a finite von Neumann algebra in the sense of [10, III], then the in-
equalities (11) and (12) for H, in places of H also hold, where ¢ is a normal state in
the tracelet space defined by the von Neumann subalgebra. More generally, if the €
is an expectation on a C*-algebra A in the sense of [7], then the same facts also hold
for any state ¢, invariant by €, that is, o(a)=a(a¢) for all ac A.

2) The subalgebra B is clearly defined such that the restriction of r onto B, is
also a gage. Therefore, z(a)=1(a¢) for all ac A (cf. [10, II]).
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