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36. On t Norma/Bas/s Theorem of the Oa/o/s Theo
or Fin/re Fact.s

By gir6 TAKEDA
Ibaraki University

(Comm. by K. KUNUGI, M.J.A., March 13, 1961)

This paper is a continuation of [3], [4] and [5]. In these pre-
ceding papers we have shown that the fundamental principles of the
Galois theory remain true for finite factors as same as for rings with
minimum condition. In this paper we shall show the existence of a
normal basis for a Galois extension of a finite factor and a theorem
concerning to normal subgroups of a Galois group corresponding to
the well-known theorems of the classical theory.

1. Employing the terminology of J. Dixmier 1], we denote by
A a continuous finite factor standardly acting on a separable Hilbert
space H and by G a finite group of outer automorphisms of A. Then
G permits a unitary representation {u} on H such that ----u*u for
xA.) Putting x’--u*x’u, for x’A’, every gG (gl) induces an
outer automorphism to the commutor A’ of A. Hence G may be con-
sidered as a group of outer automorphisms of A’ as well as of A (el.
[4J). We put B and the subfactors of A and A’ consisting of all
invariant elements by G respectively.

Next we construct the crossed product G(R)A of the factor A
by the group G (cf. [2J). By the outer property of G, G(R)A is a
finite factor. To say more precisely, let us denote by G(R)H the Hil-
bert space of all functions defined on G taking values in H. Let
,g(R) be a function belonging to G(R)H which takes value eH
at geG, then every aeA and goeG defines an operator a and go on
G(R)H such that

(-. g(R)%)a =’Y-., g(R)aa, (-, g(R)P)gt =-] ggo
respectively. The crossed product G(R)A can be understand as a von
Neumann algebra generated by {a,golaeA, goeG}. We put Aa

={aalaeA}, then by the construction of the Hilbert space G(R)H and
the definition of a, we can easily understand that A is an n-fold
copy of A acting on H. Since the order n of G is finite, both A
and its commutor A’ are finite factors.

As discussed in [4], there exists a subspace K of G(R)H invariant
by G(R)A, on which the restriction of G(R)A is unitarily isomorphic

to /’ acting on H. In fact, let l6H be a trace element of A sat-

1) is the image of z due to an automorphism g.
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isfying lug=l for every gG, then --gg(R)IIG(R)H is a
trace element of A and the subspace K spanned by [alaA} has
the desired property (cf. 4: Lemma 6]).

LEMMA 1. K has he relative dimension 1/n wih respec o
(G(R)A)’.

Proof. Since the subspace K reduces every element of G(R)A, it
belongs to (G(R)A)’ and also to A’. Hence the relative dimension of
K with respect to (G(R)A)’ is equal to that of K with respect to A’.
On the other hand K and 1 (R)H are subspaces of G(R)H spanned by
{a} and {(l(R)l’)aa}) respectively, where and 1(R)1 are trace ele-
ments of A. Hence they are mutually equivalent with respect to
A’ and so they have the same relative dimension. Since A acting
on G(R)H is an n-fold copy of A standardly acting on H, I(R)H has
the relative dimension 1/n with respect to A’. Hence the relative
dimension of K with respect to (G(R)A)’ is 1/n too.

We denote by B and G(R)B the subalgebras of G(R)A generated
by {b b B} and {b, g b B, go G} respectively. Then clearly G(R)A
G(R)BB and so (G(R) A)’ (G(R) B)’ B’. Because B is an n-
fold copy of the finite factor B acting on H, both B and its com-
mutor B’ are finite factors. Hence the relative dimension of K with
respect to (G(R)B)’ is meaningful and is equal to 1In. On the other
hand, let B’ be a subspace of H spanned by {lblbeB}. Clearly B’
is invariant by B and, as we have shown in [5: Lemma 1], its relative
dimension with respect to B’ is 1/n. Now we denote by G(R)B" the
subspace of G(R)H spanned by functions g(R) satisfying B.
G(R)B" is invariant by G(R)B and it has the relative dimension 1/n
with respect to (G(R)B)’. Thus G(R)B and K has the same relative
dimension with respect to (G(R)B)’, hence there is a partial isometric
operator q in (G(R)B)’ having the initial domain G(R)B" and the range
K.

Now l(R)l’,g(R)l, ...,k(R)l’ are trace elements of B belonging

to G(R)B" and satisfying (l(R)l’)g=g(R)l for every gG. Let
[(g(R)l’)B] be the subspace of G(R)H spanned by {(g(R)l’)blbB}.
Then G(R)B’ are the direct sum of such spaces, that is,
( 1 ) G(R)B’=E(I(R)I’)B][(g(R)I’)B] [(k(R) I’)B].
We put @=(l(R)l’)q and @-(g(R)l’)q, then @ and @ are elements
in K and we get
( 2 ) ’=(g(R) l’)q= (1 (R) l’)gq---(1 (R) l)qg =g.

2) Of. [4:I] and [5:2].
3) I(R)H is the subspace of G(R)H consisting of functions such that =0 for

every g@l.
4) By h(R) 1s we mean the function belonging to G(R)H such that =1 and =0

if gh.
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Hence , ,-.., are trace elements of B contained in K and,
corresponding to (1), K decomposes into mutually orthogonal subspaces
such as
( 3 ) K=[B] [B]@-:-[B].

2. We put =u for H, then we get
LEMMA 2. There exists a trac element eH of B which satisfies

H-- [mB] @ [mB] (R)...@ [m’B].
Proof. Let u be a unitary isomorphism between H and K which

gives the spatial isomorphism of /}’ acting on H and G(R)A acting on
K. Then especially we get uau*--a, ugu*--uo. Hence, putting
=@u*, we get =u=ugu*--u*. Then, corresponding to (3),
H decomposes into
( 4 ) H-- [B] [p’B] -.. [pB].
Since is a trace element of B, is a trace element of B.

q.e.d.
L 3. There is an element aeA such that --a’, tha is,

H-- [a’B] [a’B] [a’B],
where a-l’a for each aeA.

Proof. Putting (l’b)v--b for bB and v=0 for ]eB’+/-, we get
a partially isometric operator v. Clearly v belongs to the commutor
B’ of B. Hence it permits an expression such that v--a+ua+...
+ua’, where a,..., a, are elements of A’ (cf. [3: Lemma 4]). Hence

=l’(aq-ua+ q-uaf)=l"(aq-aq- q-a)
because 1’u-----1’. By the assumption, A and A’ act standardly on H,
whence for every a’A’ there exists a=eA such that l’a=l’a. Put
a=a+...-l-a, then aA and we get =l*(a+aq-...q-a)=l"a=a*
and so =a*u=a’. q.e.d.

The following theorem corresponds to the so-called normal basis
theorem in the classical Galois theory for Noetherian rings (cf. [6]).

THEORE 1. Let B be a subfactor of a continuous finite factor
A consisting of all invariant elements by a finite group G of outer
automorphisms of A, then there exists aeA, by which every xA is
epressed as

m--ab,-kab+... +ab
where b, b, ..., b are elements of B.

Proof. We show by / the conditional expectation of A condi-
tioned by B (cf. [7]). Let aeA be an element shown in Lemma 3
and put b--(a*x) for meA, then for every beB we get

<a’b, a’b> r(bb* ) r(b(x*a)+) r(bx*a)=r(abx*)= <x’ a’b>,
where r means the standard trace of A. This implies that a’b, is the
projection of ’ onto the subspace [a’B]. Similarly, put b--(a*x)+,
then a’b is the projection of ’ to the subspace [a’B]. Hence by
Lemma 3 we know
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x*:a*b-a*b+ +a*b--(ab+aqb+ +ab)*.
Since the mapping x->x from A into H is one-to-one, we get

x--ab-ab- -kab. q.e.d.
3. As same as in 2, we denote by A a Galois extension of a

finite factor B having a Galois group G. Let C be an intermediate
subfactor between A and B. Then by the fundamental theorem [3:
Theorem 2J, A is a Galois extension of C and its Galols group F is
a subgroup of G. Now let a be an isomorphism of C into A fixing
every element of B, then by the extension theorem [4], a can be
extended to an automorphism g of A belonging to G. As easily seen,
the isomorphic image C is an intermediate subfactor between A and
B, and g-Fg is its corresponding Galois group.
L.A 4. If F is a normal subgroup of G, then C is the Galois

extension of B having the Galois group isomorphiv to G/F.
Proof. Let C be the image of C by g, then the corresponding

Galois group of C is g-Fg. Since F is normal, g-Fg--F, whence
we know C-C. This implies that every ge G induces an automorphism
of C fixing every element of B. Clearly the induced automorphisms
are identity if and only if geF. Hence the group of automorphisms
of C introduced by G is isomorphic to G/F. This group of automor-
phisms of C is outer. Otherwise it contains a non-identity inner auto-
morphisms a. Hence there is a unitary element uC such that
u*xu for xC. Especially for bB, b--u*bu. That is, uB’. Thus
u CB AB. This is impossible since AB’ is the multiples of
the identity by 4" Corollary lJ.

LEMMA 5. f C is a Galois extension of B, the group F cor-
responding to C is a normal subgroup of G.

Proof. We denote by the Galois group corresponding to the
extension C of B. By the extension theorem every ae can be ex-
tended to an automorphism g belonging to G. We put ( the set of
all such possible extensions. If g, g.(, then gg,. and g induce
automorphisms of C belonging to , whence ( is a subgroup of G.
Clearly F(. Hence the elements of A fixed by ( are included in
C. Since is the Galois group of the extension C of B, the set of
invariant elements of C by is B itself. Hence the invariant ele-
ments of A by ( coincide with B. This means (-G. Thus we
know that every geG induces an automorphism of C. C-C implies
g-Fg--F. Thus we get the desired conclusion.

By Lemmas 4 and 5 we get
THEOREM 2. Let A be a Galois extension of a finite factor B,

and let C be an intermediate subfactor between A and B. Denote
by G and F Galois groups corresponding to A and C respectively.
Then C is a Galois extension of B if and only if F is a normal
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subgroup of G; if this is the case, C has a Galois group isomorphic
to G/F.
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