33. Product of Metric Spaces with an Extension Property

By Masahiko Atsuji

Department of Mathematics, Kanazawa University (Comm. by K. KUNUGI, M.J.A., March 13, 1961)

In this note, a function is a real-valued uniformly continuous mapping. We say a uniform space has an extension property or a property E [1] if every function on any uniform subspace of the uniform space has a uniform extension to the whole space. We know [1], [2] some characterisations for a metric space to have the property E. In this note, we are going to find a necessary and sufficient condition for a product space of metric spaces to have the property E. Let V be an entourage in a uniform space, then we shall say that a family of subsets is V-discrete if V(x) meets at most one member of the family for every point x of the space, and a family of subsets is uniformly discrete if it is V-discrete for some entourage V. $V^{\infty} = \smile_n V^n$. In a metric space, V_e , e a positive number, is the entourage in the space consisting of pairs of points whose distances are less than e.

Let us recall some known results for later use.

Theorem 1 ([1], Theorem 2). A pseudo-metric complete space has the property E if and only if, for any positive number e, there is a compact subset K such that, for any open subset G containing K, there is a positive number e' satisfying $V_e(p) \supset V_e^{\infty}(p)$ for every point $p \notin G$.

Theorem 2 [1]. A uniform space has the property E if for any entourage V there is a precompact subset K such that for any open subset G containing K there is an entourage W satisfying V(p) $\supset W^{\infty}(p)$ for every point $p \notin G$.

We shall call the following property of a metric space the *property* (*).

(*) For any positive number e there is a positive number e' such that $V_e(p) \supset V_{e'}^{\infty}(p)$ for every point p in the space.

Theorem 3. A product space S of complete metric spaces S_{α} has the property E if and only if

(1) S is compact, or

(2) all S_{α} have the property (*), or

(3) all but one, say S_{β} , of S_{α} have the property (*) and are compact, and S_{β} has the property E.

Proof. Suppose that S has the property E and is neither of the type (1) nor (2). Since we can consider S_{α} as a uniform subspace

of S, every S_a has the property E. Some S_β is not compact, which contains a V_e -discrete sequence $\{p_n\}$ of points for some e > 0. If another S_r has not the property (*), then it contains a sequence $\{q_n\}$ of points satisfying $V_{e'}(q_n) \stackrel{\rightarrow}{\rightarrow} V_{1/n}^{\infty}(q_n)$ for some e' > 0 and every n. As a uniform subspace of $S, S_\beta \times S_r$ has the property E. On the other hand, since $\{x_n = (p_n, q_n); n = 1, 2, \cdots\}$ is uniformly discrete in $S_\beta \times S_r$, any compact subset K in $S_\beta \times S_r$ does not include x_n for all n greater than some n_0 , and there is an open subset containing K and disjoint from $\{x_n; n > n_0\}$. However, there is no entourage V in $S_\beta \times S_r$ satisfying $V_e \times V_{e'}(x_n) \supset V^{\infty}(x_n), n > n_0$, which contradicts Theorem 1. Therefore all but S_β have the property (*), and, since S is not (2), S_β has not the property (*), and so all but S_β must be compact as we have proved just above. Conversely, if S is a space of the type (1), (2), or (3), then S has the property E by Theorems 1 and 2.

References

- M. Atsuji: Uniform extension of uniformly continuous functions, Proc. Japan Acad., 37, 10-13 (1961).
- [2] H. H. Corson and J. R. Isbell: Some properties of strong uniformities, Quart. J. Math., 11, 34-42 (1960).