53. On a Problem of C. D. Papakyriakopoulos

By Junzo Tao
Department of Mathematics, Osaka University
(Comm. by K. Kunugi, m.J.A., April 12, 1961)

1. A problem of C. D. Papakyriakopoulos. Let M be an orientable closed 3-manifold and let F_{1} and F_{2} be two orientable closed surfaces of the same genus h in M such that $M-F_{1}$ and $M-F_{2}$ consist of two components, the closure of each one of which being a solid torus of genus h. Then the uniqueness problem proposed by C. D. Papakyriakopoulos [1] is the following:

Does there exist a homeomorphism of M onto itself carrying F_{1} onto F_{2} ?

In this note we shall show that the problem is affirmative for $h=1$.

Theorem. Let M be an orientable closed 3-manifold and let F_{1} and F_{2} be two orientable closed surfaces of genus one in M, such that $M-F_{1}$ and $M-F_{2}$ consist of two components, the closure of each one of which being a solid torus of genus one. Then there exists a homeomorphism of M onto itself carrying F_{1} onto F_{2}.

Before we proceed to the proof of the theorem, we shall prove the following lemma on a lens space.

Lemma. Let M be a lens space of the type $L(p, q)$, where $0 \leqq q \leqq \frac{p}{2}$ and $(p, q)=1^{1)}$ [2]. Let T be a closed orientable surface of genus one in M, such that $M-T$ consists of two components, whose closures V and V^{\prime} are solid tori of genus one. Then there exist meridians ${ }^{2)} m, m^{\prime}$ and longitudes ${ }^{2)} l, l^{\prime}$ of V and V^{\prime} respectively, which satisfy the following condition:
m is homologous to $q m^{\prime}+p l^{\prime}$ on $T=\partial V=\partial V^{\prime}$ or
m^{\prime} is homologous to $q m+p l$ on T.
Proof of Lemma. There exist meridians m, m^{\prime} and longitudes l, l^{\prime} of V and V^{\prime} respectively, such that
$\binom{m}{l}$ is homologous to $\left(\begin{array}{ll}q^{\prime} & p \\ x & y\end{array}\right)\binom{m^{\prime}}{l^{\prime}}$ on T,
where $0 \leqq q^{\prime} \leqq \frac{p}{2},\left(p, q^{\prime}\right)=1$ and $\left|\begin{array}{ll}q^{\prime} & p \\ x & y\end{array}\right|=1$.
Then we shall obtain $q=q^{\prime}$ or $q q^{\prime} \equiv \pm 1(\bmod p)$.

[^0]If $q=q^{\prime}$, Lemma is satisfied for (m, l) and (m^{\prime}, l^{\prime}).
If $q q^{\prime} \equiv \pm 1(\bmod p)$, then $\binom{m^{\prime}}{l^{\prime}}$ is homologous to $\left(\begin{array}{cc}y & -p \\ -x & q^{\prime}\end{array}\right)\binom{m}{l}$ on T.

From the conditions $q^{\prime} y \equiv 1(\bmod p), q^{\prime} q \equiv \pm 1(\bmod p)$ and $\left(q^{\prime}, p\right)$ $=1$, we obtain $\pm q \equiv y(\bmod p)$, that is, $y= \pm q-t p$ for some integer t. Let us denote

$$
\binom{\tilde{m}}{\widetilde{l}}=\left(\begin{array}{cc}
\pm 1 & 0 \\
-t & -1
\end{array}\right)\binom{m}{l},
$$

then \tilde{m} and \tilde{l} are a meridian and a longitude of V respectively and m^{\prime} is homologous to $q \widetilde{m}+p \widetilde{l}$ from the following calculation.

$$
\begin{aligned}
\left(\begin{array}{cc}
y & -p \\
-x & q^{\prime}
\end{array}\right)\binom{m}{l} & =\left(\begin{array}{cc}
\pm q-t p & -p \\
-x & q^{\prime}
\end{array}\right)\binom{m}{l} \\
& =\left(\begin{array}{cc}
\pm q-t p & -p \\
-x & q^{\prime}
\end{array}\right)\left(\begin{array}{cc}
\pm 1 & 0 \\
-t & -1
\end{array}\right)^{-1}\binom{\widetilde{\tilde{m}}}{\widetilde{l}} \\
& =\left(\begin{array}{cc}
\pm q-t p & -p \\
-x & q^{\prime}
\end{array}\right)\left(\begin{array}{cc}
\pm 1 & 0 \\
\mp t & -1
\end{array}\right)\binom{\widetilde{m}}{\widetilde{l}} \\
& =\left(\begin{array}{cc}
q & p \\
\mp x \mp q^{\prime} t & -q^{\prime}
\end{array}\right)\binom{\widetilde{m}}{\widetilde{l}} .
\end{aligned}
$$

Thus our Lemma is proved.
2. The proof of the theorem. We may suppose that M is a lens space of the type $L(p, q)$, where $0 \leqq q \leqq \frac{p}{2}$ and $(p, q)=1$. Let V_{i} and V_{i}^{\prime} be the closures of the two components of $M-F_{i}(i=1,2)$. From the above lemma there exist meridians $m_{i}, m_{i}^{\prime}(i=1,2)$ and longitudes $l_{i}, l_{i}^{\prime}(i=1,2)$ of V and V^{\prime} respectively which satisfy the following conditions:
m_{1} is homologous to $q m_{1}^{\prime}+p l_{1}^{\prime}$ on $\partial V_{1}^{\prime}=F_{1}$ or m_{1}^{\prime} is homologous to $q m_{1}+p l_{1}$ on $\partial V_{1}=F_{1}$ and
m_{2} is homologous to $q m_{2}^{\prime}+p l_{2}^{\prime}$ on $\partial V_{2}^{\prime}=F_{2}$ or m_{2}^{\prime} is homologous to $q m_{2}+p l_{2}$ on $\partial V_{2}=F_{2}$.

Without loss of generality, we may suppose that $\binom{m_{i}}{l_{i}}$ is homologous to $\left(\begin{array}{ll}q & p \\ x_{i} & y_{i}\end{array}\right)\binom{m_{i}^{\prime}}{l_{i}^{\prime}}$ on $F_{i}(i=1,2)$. From the fact $\left|\begin{array}{ll}q & p \\ x_{i} & y_{i}\end{array}\right|= \pm 1$ and $(p, q)=1$, there exists an integer t which satisfies $x_{1}=x_{2}+t q$ and $y_{1}=y_{2}+t p$.

Let k be a homeomorphism from V_{1}^{\prime} to V_{2}^{\prime} which carries m_{1}^{\prime} and l_{1}^{\prime} to m_{2}^{\prime} and l_{2}^{\prime} respectively.

Let us suppose that M is constructed by the identification f_{i} of the boundary ∂V_{i} of V_{i} with the boundary ∂V_{i}^{\prime} of $V_{i}^{\prime}(i=1,2)$.

Let h^{\prime} be the homeomorphism $f_{3}^{-1} k f_{1}$ from ∂V_{1} to ∂V_{2}.

Then $\binom{h^{\prime}\left(m_{1}\right)}{h^{\prime}\left(l_{1}\right)}$ is homologous to $\left(\begin{array}{cc}q & p \\ x_{1} & y_{1}\end{array}\right)\left(\begin{array}{cc}q & p \\ x_{2} & y_{2}\end{array}\right)^{-1}\binom{m_{2}}{l_{2}}$ $=\left(\begin{array}{cc}q & p \\ x_{2}+q t & y_{2}+p t\end{array}\right)\left(\begin{array}{ll}q & p \\ x_{2} & y_{2}\end{array}\right)^{-1}\binom{m_{2}}{l_{2}}$
$=\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right)\left(\begin{array}{ll}q & p \\ x_{2} & y_{2}\end{array}\right)\left(\begin{array}{ll}q & p \\ x_{2} & y_{2}\end{array}\right)^{-1}\binom{m_{2}}{l_{2}}$
$=\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right)\binom{m_{2}}{l_{2}}$ on ∂V_{1}.
Therefore the homeomorphism h^{\prime} from ∂V_{1} to ∂V_{2} may be extended to a homeomorphism h from V_{1} to V_{2}.

Then it is clear that the following diagram is commutative on the boundary of V_{i} and $V_{i}^{\prime}(i=1,2)$.

Defining a homeomorphism from M to M by

$$
\begin{aligned}
f(x) & =h(x) & & \text { if } x \in V_{1} \\
& =k(x) & & \text { if } x \in V_{1}^{\prime},
\end{aligned}
$$

we obtain a homeomorphism from M to M which carries F_{1} to F_{2}. Thus our Theorem is proved.

References

[1] C. D. Papakyriakopoulos: Some problems on 3-dimensional manifolds, Bull. Amer. Math. Soc., 64, 317-335 (1958).
[2] H. Seifert und W. Threlfall: Lehrbuch der Topologie, Leiprig (1934).

[^0]: 1) Throughout this paper, if $p=1$, we consider $q=0$ and if $p=0$, we consider $q=1$.
 2) A meridian m of a full torus V of genus one means an oriented simple closed curve on ∂V which is homotopic zero in V and a longitude of V means an oriented simple closed curve on ∂V which has the intersection number 1 with m.
