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A topological group G is said to act on a topological space M
when the following conditions are satisfied:

(1) the elements of G are homeomorphisms of M onto itself,
(2) the mapping (g, x)->g(x) of GM onto M is continuous,
( 3 ) g(g2(x))-- (gg2)() for every x eM and g, g2 G.

In the following G will denote a locally compact group satisfying
the second axiom of countability, Go the identity component of G, and
M a Hausdorff space throughout this note.

Montgomery and Zippin [7] proved that if G is a compact group
acting on a k-dimensional orbit M, then M is locally the topological
product of a k-cell by a compact zero dimensional set. In the general
case where G is locally compact, as a counter example shows, the
above fact is not true, but it holds if only the zero dimensional set
is "closed in M" instead of "compact" (the main theorem). As a
corollary of this fact it is proved that if G acts transitively and
effectively on a finite dimensional connected locally connected space
M then G is a Lie group (Corollary 1). Moreover the assumption that
M is connected is redundant in this corollary when G/Go is compact
or G is abelian (Corollary 2).

As G satisfies the second axiom of countability, all factor spaces
and orbits of G are separable metric, so that we can make free use
of dimension theory (cf. [4]). For topological and group-theoretical
terms, we follow the usage of Montgomery and Zippin [6].

The following Lemma 1 was proved by Montgomery and Zippin
[7] when G is compact. Using the structure theorem of locally
compact groups (cf. _6, p. 175), their proof remains true as it is
when G is locally compact and G/Go is compact.

Lemma 1 (Montgomery and Zippin [7]). If G/Go is compact and
G acts on a finite dimensional orbit G(x), then G is effectively finite
dimensional on G(x). In fact, there must be a connected compact
invariant subgroup K which is idle on G(x) and such that G/K is

finite dimensional.
Lemma 2. Let G be a finite dimensional group, and H a closed

subgroup of G. Then there is such an arbitrarily small compact
local cross section W of cosets of H as the form LZ, where L is a

compact local Lie subgroup of G and Z is a compact zero dimensional
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homogeneous set and LZ is homeomorphic to the topological product
of L and Z.

This lemma was essentially proved in [5_].
The following lemma is well known and can be proved modifying

the arguments in [2J. Therefore we omit the proof (see also
and [8-]).

Lemma 3 (Gleason 2). If L is a local Lie group acing on a
completely regular space, such that the action on a given point x is
homeomorphic, then there is a closed set C containing x and a neigh-
borhood L’ of the identity in L such that the mapping L’ C-->L’(C)
is a homeomorphism onto a neighborhood of x.

Now we prove the main theorem.
Theorem. If G acts on a space M, then any finite dimensional

orbit G(x) is locally the topological product of a Euclidean cube by a
zero dimensional set closed in G(x). If G(x) is locally compact, we
can choose this zero dimensional set as a compact one.

Proof. There exists an open subgroup G’ of G such that G’/G
is compact. By Lemma 1 there is a compact invariant subgroup K
of G’ which is idle on G’(x) and such that G’/K is finite dimensional.
Let be the natural mapping of G onto G]K and G* be the image
of G under . Then G*--G’/K is a finite dimensional group and
consequently by Lemma 2 there is a compact local cross section
L’Z* of cosets of G* which is the topological product of L* by Z*,
where L* is a compact local Lie subgroup of G* and Z* a zero di-
mensional compact subset of G*. Let L be a compact local Lie sub-
group of G’ which is homeomorphically mapped onto L* by u (cf. 6,
p. 192). Next we choose an element of G’ from the complete inverse
image of each point in Z*; from K we choose the identity; and let
Z denote the set of the elements of G’ thus chosen. Then LZ is a
compact local cross section of cosets of G in G (cf. [5], p. 343) and
LZ is the topological product of L and Z. In particular dim L
=dim GIGs. Since L acts on x homeomorphically, dim L(x)=dim L.
Moreover dim G(x)-dim G/G by a theorem of Yamanoshita [9] (see
also [5]). On the other hand by Lemma 3, there is a closed set C
containing x and a neighborhood L’ of the identity in L such that
the mapping L’X C-->L’(C) is a homeomorphism onto a neighborhood of
x in G(x). Then it is proved as follows that C is zero dimensional.
If C were positive dimensional, there would be a one dimensional
subset C’ of C by the usual definition of dimension. Since L’(C’) is
homeomorphic to L’(x) C’,

dim L’(C’)--dim L’()+dim C’ (cf. [3]).
And so dim L’(C’)>dim L’(x)--dim G(x). This contradicts the fact that
dim L’(C’)dim L’(C)=dim G(x).
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]xample. Let G be the group of integers acting on a circum-
ference M by rotating integral multiples of an irrational multiple of
2. Any orbit G(z) is then zero dimensional and locally non-compact.

Corollary 1. If G acts transitively and effectively on a finite
dimensional connected locally connected space M, then G is a Lie
group.

Proof. Since M is a connected manifold, G is a Lie group (cf.
E 3, p. 106).

Corollary 2. Let G be a group transitively and effectively acting
on a finite dimensional locally connected space M. If G/Go is compact
or G is abelian, $hen G is a Lie group.

Proof. If G/Go is compact, G is finite dimensional by Lemma 1.
Hence G is a Lie group by a theorem of Bredon [1]. If G is abelian,
G is equal to the identity for any element of M. Since the map-
ping of G onto G(x) defined by g-g() for geG is one-to-one open
continuous, it is a homeomorphism. Hence G is locally Euclidean, i.e.
it is a Lie group.
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