45. A Note on Hausdorff Spaces with the Star-finite Property. II

By Keiô NAGAMI

(Comm. by K. KUNUGI, M.J.A., April 12, 1961)

K. Morita [4] constructed, for every metric space R, a 0-dimensional metric space S and a closed continuous mapping f of S onto R such that $f^{-1}(x)$ is compact for every point x of R. The purpose of this note is to give an analogous proposition to this theorem for the case when R is paracompact Hausdorff. As for the terminologies and the notations used in this note, refer to my previous note [7].

Theorem 1. Let f be a closed continuous mapping of a regular space R onto a topological space S with the star-finite property such that $f^{-1}(y)$ has the Lindelöf property for every point y of S. Then R has the star-finite property.

Proof. Let II be an arbitrary open covering of R. For every point y of S let $\mathbb{I}_y = \{U_a; \alpha \in A_y\}$ be a subcollection of II which consists of countable elements such that \mathbb{I}_y covers $f^{-1}(y)$. Let $U_y = \bigcup \{U_a; \alpha \in A_y\}$ and $V_y = S - f(R - U_y)$. Then V_y is an open neighborhood of y. Let $\mathfrak{B} = \{V_\beta; \beta \in B\}$ be a star-finite open covering of S which refines $\{V_y; y \in S\}$. Let us define a (single-valued) mapping φ of B into Ssuch that $\varphi(\beta) = y$ yields $V_{\beta} \subset V_y$. Let $W_y = f^{-1}(V_y)$ and $W_{\beta} = f^{-1}(V_{\beta})$. Then we can prove that $\mathfrak{B} = \{W_\beta \cap U_a; \alpha \in A_{\varphi(\beta)}, \beta \in B\}$ is a star-countable open covering of R.

To show that \mathfrak{W} covers R, let x be an arbitrary point of R. Then there exists $\beta \in B$ such that $x \in W_{\beta}$. Since $V_{\beta} \subset V_{\varphi(\beta)}$, we get $W_{\beta} \subset W_{\varphi(\beta)}$. Since $W_{\varphi(\beta)} \subset U_{\varphi(\beta)}$ and $U_{\varphi(\beta)} = \smile \{U_{\alpha}; \alpha \in A_{\varphi(\beta)}\}$, there exists an $\alpha \in A_{\varphi(\beta)}$ such that $x \in U_{\alpha}$. Hence \mathfrak{W} is an open covering of R. On the other hand the star-countability of \mathfrak{W} is almost evident. Therefore we can conclude that R has the star-countable property. Since in general a regular space with the star-countable property has the star-finite property by Yu. Smirnov [9],¹⁾ R has so and the theorem is proved.

Theorem 2. Let R be a non-empty paracompact Hausdorff space. Then there exist a paracompact Hausdorff space A with dim A=0and a closed continuous mapping f of A onto R such that $f^{-1}(x)$ is compact for every point x of R.

Proof. Let $\{\mathfrak{F}_{\alpha} = \{F_{\alpha}; \alpha \in A_{\lambda}\}; \lambda \in \Lambda\}$ be the collection of all locally finite colsed coverings of R. Let A be the aggregate of points a

¹⁾ This theorem is also almost essentially proved in Morita [5].

 $=(\alpha_{\lambda}; \lambda \in \Lambda)$ of the product space $\Pi\{A_{\lambda}; \lambda \in \Lambda\}$, where A_{λ} are topological spaces with the discrete topology, such that $\frown\{F_{\alpha_{\lambda}}; \lambda \in \Lambda\} \neq \phi$. When $\frown\{F_{\alpha_{\lambda}}; \lambda \in \Lambda\}$ is not empty, it is a single point. Define $f: A \to R$ as $f(a) = \frown\{F_{\pi_{\lambda}(a)}; \lambda \in \Lambda\}$, where $\pi_{\lambda}: B \to A_{\lambda}, \lambda \in \Lambda$, is the restriction of the projection defined on ΠA_{λ} into A_{λ} . It can easily be seen that f is continuous and onto.

To show the closedness of f, let B be an arbitrary non-empty closed subset of A and x an arbitrary point of $\overline{f(B)}$. Let λ be an arbitrary element of Λ . Let $B_{\lambda} = \{\alpha; x \in F_{\alpha} \in \mathfrak{F}_{\lambda}\}$; then $U_{\lambda} = R - \bigcup \{F_{\alpha}; \alpha \in A_{\lambda} - B_{\lambda}\}$ is an open neighborhood of x by the local finiteness of \mathfrak{F}_{λ} . Since $f(B) \cap U_{\lambda} \neq \phi$, it holds that $B \cap f^{-1}(U_{\lambda}) \neq \phi$. Since $f^{-1}(U_{\lambda}) \subset \bigcup \{\pi_{\lambda}^{-1}(\alpha); \alpha \in B_{\lambda}\}$, there exists an index $\alpha(\lambda) \in B_{\lambda}$ with $\pi_{\lambda}^{-1}(\alpha(\lambda)) \cap B \neq \phi$.

Let $a = (\alpha(\lambda); \lambda \in \Lambda)$; then it is easy to see that f(a) = x. Since, for any λ , $\pi_{\lambda}^{-1}(\pi_{\lambda}(a)) \frown B = \pi_{\lambda}^{-1}(a(\lambda)) \frown B \neq \phi$, a is a point of $\overline{B} = B$. Therefore we get $x = f(a) \in f(B)$ and hence $\overline{f(B)} \subset f(B)$. Thus the closedness of f is proved. Moreover $f^{-1}(x)$ is compact, since $f^{-1}(x)$ $= \Pi\{B_{\lambda}; \lambda \in \Lambda\}$ and B_{λ} is finite for every $\lambda \in \Lambda$.

Finally let us prove that A is a paracompact Hausdorff space with dim A=0. Let ll be an arbitrary open covering of A; then ll can be refined by a covering \mathfrak{B} whose elements are open and closed, by the equality ind A=0. Since, for any $x \in R$, $f^{-1}(x)$ is compact, there exist a finite number of elements $V_{x,1}, \dots, V_{x,m(x)}$ of \mathfrak{B} with $f^{-1}(x) \subset V_{x,1} \smile \cdots \smile V_{x,m(x)} = W_x$, where we can put $V_{x,1} = \phi$, $x \in R$, without loss of generality. Put $D(x) = R - f(A - W_x)$; then there exists an index $\lambda_0 \in A$ such that \mathfrak{F}_{λ_0} refines $\{D(x); x \in R\}$. Since i) $\{\pi_{\lambda_0}^{-1}(\alpha); \alpha \in A_{\lambda}\}$ refines $\{f^{-1}(D(x)); x \in R\}$ and the latter refines $\{W_x; x \in R\}$ and ii) the order of $\{\pi_{\lambda_0}^{-1}(\alpha); \alpha \in A_{\lambda}\}$ is 1, we can prove, by an easy transfinite induction on $x \in R$, the existence of an open covering $\{U_x; x \in R\}$ of order 1 with $U_x \subset W_x$ for every $x \in R$.

Let $\mathfrak{E} = \{ U_x \frown (V_{x,i} - \bigcup_{j \leq i} V_{x,j}); i = 2, \dots, m(x), x \in R \};$ then \mathfrak{E} is an open covering of A of order 1 which refines \mathfrak{U} . Thus A is a paracompact Hausdorff space with dim A = 0 and the theorem is proved.

Remark. An analogous result to our Theorem 2 has been obtained independently by V. Ponomarev [8]. He proves that for any normal space R there exist a completely regular space A with ind A=0 and a closed continuous mapping f of A onto R such that i) $f^{-1}(x)$ is compact for every x of R, ii) $f(A_1) \neq R$ for any proper closed subset A_1 of $A_1^{(2)}$ iii) $\tau A = \tau R$, where τA and τR denote respectively the topological weights³⁰ of A and R. We shall show in the following that this theorem is valid even if R is completely regular. He says

²⁾ A mapping with this property ii) is called *irreducible*.

³⁾ The topological weight of a topological space is the minimum of the cardinal numbers of its open bases.

also that A cited in his theorem is normal. But it seems that, as far as I know, there has been no paper which assures the normality of A. I hope that he will make a public expression of his proof.

Lemma 1. Let R be a topological space, S a space and f a mapping of R onto S such that $f^{-1}(y)$ is compact for every point $y \in S$. Then there exists a closed subset R_1 of R such that $f | R_1$ is irreducible.

Proof. Let $\mathfrak{F} = \{F_a; \alpha \in A\}$ be the family of all closed subsets F_α of R such that $f(F_\alpha) = S$. Let us introduce into \mathfrak{F} the semi-order < such that $F_\alpha < F_\beta$ if and only if $F_\alpha \supset F_\beta$. Let $\mathfrak{F}_1 = \{F_\alpha; \alpha \in A_1\}$ be an arbitrary linearly ordered subset of \mathfrak{F} and y an arbitrary point of S. Then $\{F_\alpha \frown f^{-1}(y); \alpha \in A_1\}$ has clearly the finite intersection property. Hence $\frown \{F_a; \alpha \in A_1\} \frown f^{-1}(y) \neq \phi$, which proves $\frown \{F_a; \alpha \in A_1\} \in \mathfrak{F}$. Thus \mathfrak{F}_1 has an upper bound in \mathfrak{F} . Therefore by Zorn's lemma \mathfrak{F} has a maximal element R_1 . $f \mid R_1$ is evidently irreducible.

Theorem 3. Let R be a non-empty completely regular space. Then there exist a completely regular space A and a closed continuous mapping f of A onto R which satisfy the following conditions. (1) $f^{-1}(x)$ is compact for every point $x \in R$.

- (2) f is irreducible.
- (3) ind A=0.
- (4) $\tau A \leq \tau R.$

Proof. Embed R densely into a compact Hausdorff space S with $\tau R = \tau S$; this is possible. Let $\mathfrak{U} = \{U_{\varepsilon}; \varepsilon \in S\}$ be an open basis of S with $|S| = \tau R$. Let $\mathfrak{M} = \{M_{\sigma}; \sigma \in \Sigma_1\}$ be the family of all finite subsets M_{σ} of S; then $|\mathfrak{M}| = |S| = \tau R$. Hence we have $|F| = \tau R$, where $F = \{\mathfrak{F}_{\sigma}; \sigma \in \Sigma\} = \{\mathfrak{F}_{\sigma} = \{\overline{U}_{\varepsilon}; \varepsilon \in M_{\sigma}\}; M_{\sigma} \in \mathfrak{M}, \bigvee \{\overline{U}_{\varepsilon}; \varepsilon \in M_{\sigma}\} = S\}$. Consider the product space $\Pi\{M_{\sigma}; \sigma \in \Sigma\}$, where M_{σ} are topological spaces with the discrete topology. Then $\tau \Pi\{M_{\sigma}; \sigma \in \Sigma\} \leq |\mathfrak{M}| = \tau R$. Let B be the aggregate of points $a = (\varepsilon(\sigma); \sigma \in \Sigma)$ of ΠM_{σ} such that $\neg \overline{U}_{\varepsilon(\sigma)} \neq \phi$. Then $\tau B \leq \tau \Pi M_{\sigma} \leq \tau R$. When $\neg \{\overline{U}_{\varepsilon(\sigma)}; \sigma \in \Sigma\}$ is not empty, it consists of a single point. Define $g: B \rightarrow S$ as $g(a) = \neg \{\overline{U}_{\pi_{\sigma}(a)}; \sigma \in \Sigma\}$. Then by the same argument used in the proof of Theorem 2 we can know that i) B is a compact Hausdorff space with dim B = 0, ii) g is continuous and onto.

Let $A_1 = g^{-1}(R)$ and $g_1 = g | A_1$. Then the following conditions are satisfied: i) g_1 is closed continuous and onto. ii) For every point $x \in R$, $g_1^{-1}(x)$ is compact. iii) $\tau A_1 \leq \tau B \leq \tau R$. iv) ind $A_1 = 0$. By Lemma 1 there exists a closed subset A of A_1 such that $f = g_1 | A$ is irreducible. A and f thus obtained satisfy all the conditions required and the theorem is proved.

Lemma 2. Let f be a closed continuous mapping of a topological space R onto a paracompact space S such that $f^{-1}(y)$ is compact for every point $y \in S$. Then R is paracompact.

Cf. S. Hanai [2] or M. Henriksen-R. Isbell [3, Theorem 2.2].

Corollary. Let R be a non-empty paracompact Hausdorff⁴ S_o-space.⁵ Then there exist a paracompact Hausdorff S_o-space A with dim A=0 and a closed continuous mapping f of A onto R which satisfy the following conditions.

- (1) $f^{-1}(x)$ is compact for every point x of R.
- (2) f is irreducible.
- (3) dim A=0.
- $(4) \quad \tau A \leq \tau R.$

Proof. By Theorem 2 there exist a completely regular space A with ind A=0 and a closed continuous mapping f of A onto R which satisfy the conditions (1), (2), (4). Let $R=\underset{i=1}{\overset{\sim}{\leftarrow}}R_i$ where R_i , $i=1, 2, \cdots$, are non-empty closed subsets with the star-finite property. Then $A_i = f^{-1}(R_i)$, $i=1, 2, \cdots$, is a closed subset of A with the star-finite property by Theorem 1. Hence by Morita [6, Theorem 5.2] we get dim $A_i=0$. Moreover by Lemma 2 A is paracompact and hence A is normal by J. Dieudonné [1]. Therefore by the sum theorem we get dim A=0 and the corollary is proved.

References

- J. Dieudonné: Une généralisation des espaces compacts, J. Math. Pures Appl., 23, 65-76 (1944).
- [2] S. Hanai: On closed mappings. II, Proc. Japan Acad., 32, 388-391 (1956).
- [3] M. Henriksen and J. R. Isbell: Some properties of compactifications, Duke Math. J., 25, 83-105 (1958).
- [4] K. Morita: A condition for the metrizability of topological spaces and for ndimensionality, Sci. Rep. Tokyo Kyoiku Daigaku, ser. A, 5, 33-36 (1955).
- [5] —: Star-finite coverings and the star-finite property, Math. Jap., 1, 60-68 (1948).
- [6] —: On the dimension of normal spaces. II, J. Math. Soc. Japan, 2, 16-33 (1950).
- [7] K. Nagami: A note on Hausdorff spaces with the star-finite property. I, Proc. Japan Acad., 37, 131-134 (1961).
- [8] V. Ponomarev: Normal spaces as images of zero-dimensional spaces, Doklady Acad. Nauk USSR, 132, 1269-1272 (1960).
- [9] Yu. M. Smirnov: On strongly paracompact spaces, Izv. Acad. Nauk USSR, math. ser., 20, 253-274 (1956).

⁴⁾ This condition of R can be replaced with a weaker condition, collectionwise normality of R, since the following proposition is as can easily be seen valid: Let F_i , $i=1,2,\cdots$, be pointwise paracompact closed subsets of a collectionwise normal space; then $\smile F_i$ is paracompact.

⁵⁾ A space which is the sum of a countable number of closed subsets with the star-finite property is called an S_{σ} -space. This notion is due to Morita.