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1. Introduction. This is a continuation of our recent papers
[1 to 3. At the end of [2 we stated without proof a decompo-
sition theorem for the measure-length induced by a locally rectifiable
plane curve. It is the objective of the present note to prove this
theorem in a slightly generalized form (see 4) and to obtain two
further decomposition theorems concerning measure-length and spheric
measure-length respectively. The last theorem will be applied else-
where to derive a noteworthy property of the curvature of continuous
parametric curves.

2. Points of interjacence for a curve. It is convenient to begin
with two simple definitions. Let R" be a Euclidean space of any
dimension m>2__ throughout the paper. Consider in R" a parametric
curve (t), defined and locally rectifiable on the real line R. We
shall term interjacent at a point e of R, if

(--)-(c/) I-I (c--)--(c) I/l 4(c) (c+) I.
Further, a locally rectifiable, unit-spheric curve r(t)in R will be
called spherically interjacent at c, if we have the angle-relation

r(c ) r(c +) r(c- ) r(c)+r(c) r(c+).
We may also call c point of interdacence of and point of spheric
interjacence of ’, in the respective cases.

The geometric meanings of the above two notions are easily
seen. For instance, when (c--) (cq-), the former notion means
that the point (c) lies on the closed segment connecting the two
points (c--) and (cq-). (When the latter points coincide, inter-
jacence of at c is simply equivalent to its continuity at the same
point.) We leave to the reader the consideration of the spheric case.

Evidently [or 7 is interjacent [or spherically interjaeent]
wherever it is unilaterally (i.e. right-hand or left-hand) continuous.

3. A lemma. We shall now derive a result which includes the
lemma left unproved in the final section of

L.i!t, Given and as above, let S. and A. denote the
measure-length induced by and the spheric measure-length induced
by , respectively. Then we have, for every point tR,

s,({t})-I (t-)-(t)l + t(t)-q,(t+) !,
/,({t})=r(t-) r(t)+r(t) r(-+).
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PROOF. It suffices to ascertain the first relation, the second
admitting a similar treatment. Let s(t) be a length-function for the
curve , so that for every closed interval Is, b the length of over
Va, b is given by the increment s(b)--s(a). Given an arbitrary posi-
tive number s there is in the open interval (t, t+s) a point p such
that s(p)<s(t-{-)-{-s. Choose now a subdivision of the interval It,
into closed intervals Jo, J,’" .,J(l) in such a way that tJo and
that, moreover

Since clearly @(J) I+"" -t- @(J.) Is(p)--s(+), it follows that
exceeds s(t+)--s($)--. Further I@(J0)
By symmetry there exists in the half-open interval (--, ] a closed
interval K0 with right-hand extremity $, such that s()--s(--)--
<l@(Ko)l<s()--s(--)+. In view of the evident relation S.({})
=s(+)-s($-) it follows that

 (Jo)i+i  (g0) <
from which we deduce at once the desired equality by making -0.
In fact ](Jo) and I@(Ko) then tend respectively to i@(0--@(t
and q(t--)--(t)!, since tJo[t, t+e) and tKo(t--,

4. Decomposition theorems for measure.length, of which the
following first one extends slightly the theorem enunciated in [2]5.

THEOREM. Given an additive st-fuction p, finite atd nonnga-
tire, and a locally rectifiable plane curve @(t)=((t), y(t)}, with
s(J) for its arc length over closed intervals J, let Co be the set of th
points of interjacence for @, and Eo the Borel set of the points t at
each of which one at least of the interior p-derivatives (p)x’(t) and
(p)y’(t) eists and is infinite. Then, for every bounded Borel set X
in Co, we have

( 1 ) dp(t).
X

PROOf. We shall write O for the outer measure s* for brevity.
It suffices to deal only with the two cases XC and XCo-C, where
C means the set of the points of continuity of (t). Denoting further
by H the set of the points t at each of which one or both of
and (p)y’(t) exist and are infinite, and by A the set of the points t
at which (g)s(t)---+oo, we have the evident relation HCEoA.
Moreover (g)O’(t)= + oo for every t e A, since O(J) s(J) for all closed
intervals J. On the other hand, if B stands for the set of the points
t at which (p)O(t) + oo, then (p)O’(u) cannot exist at any point u
of A--B. For otherwise we should get at once the contradiction
()O’(u)=()O(u). +oo. But (p)O’(t) exists almost everywhere (O)
by part (i) of the decomposition theorem of [1]8. We thus find
O(A--B)=O. This, combined with the relation O(BC--H)=O obtained
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in the course of the proof for the Supplement of 2]4, yields us
the equality (AC--H)=O. In view of HEoA it follows that
O(EoX)=(HX) provided that XCC. Consequently the case XC
is reduced to the Supplement, loc. cir.

Let us consider the remaining case XCo-C. Since Co--C is
plainly countable, we may further restrict X to consist of a single
point p. So that *(X) and *(X)cannot both vanish; indeed z*(X)
=z(p+)--z(p--) and similarly for y*(X), as is well known. This
being so, suppose firstly p(X)=0. Then either (p)x’(p)--x*(X)/(X)
=+/- oo, or (p)yffp)-+/-oo. Thus pEo and hence (1) is evident. On
the other hand, if p(X)0, then again (p)(p)----*(X)/p(X) and similar-
ly for y, so that p does not belong to E0. Therefore (EoX)=0 and so
(1) reduces to (X)=*(X)2+y*(X)2, i.e. to O(X)-I (p+)--(p-)I.
But the last equation holds in virtue of the lemma of 3, since
is interjacent at p and since {9 coincides with the measure-length
induced by as shown in [3]4. This completes the proof.

THEOREM. Let us write further F(J)--/x(J)"+y(J) for every
closed interval J, in the abov theorem. Then he points $ of Co a
which (p)F’($) and She p-drivative of s* exis and coincide, form a
Borel set M such that
( 2 ) (Co--M)--s*(Co--M)-O.

Furthermore, if E denotes the Borel set of the points t at which
(p)F’(t)---o, we have for any bounded Borel set X in Co
(3) f

PROOF. We shall retain the notations of the foregoing proof.
The functions x(t) and y(t), being of locally bounded variation, are both
interior-derivable (p) almost everywhere () (see [2J5); while it is
obvious that (p)F’(t)--[(p)x’(t)J2+[(p)y’(t)J for every point t at
which both x and y are interior-derivable (p). Now F(J)s(J) O(J)
for all closed intervals J, and 0 is p-derivable almost everywhere (/7)
by Lebesgue’s theorem of [lJ4. Consequently (p)F’(t) (p)O’(t) holds
almost everywhere (fi). On the other hand EoEA, which together
with the relation O(A--B)=O obtained in the proof of the foregoing
theorem implies that

O(EoX)

_
O(EX) <== O(AX) O(BX)TO(A--B)=O(BX).

Combining all the above results we infer in view of (1) that

( ) o(x) <___ O(E,X)+ <= O(BX)+
But the last sum is equal to O(X) on account of the decomposition
theorem of [18. Thus the two signs of inequality in (4) may both
be replaced by those of equality. This establishes the formula (3).
Moreover the two integrals in (4) must coincide, and hence (C-M)
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--0 since X is arbitrary. It follows that (Y):O(E1Y)--O(BY), where
and subsequently Y is any bounded Borel set in Co--M. Replacing
Y by EY here, we derive O(E Y)--O(BE Y)--O, since the intersection
BEvY is clearly void. This implies that O(Y)-0 for all Y and that
therefore O(Co--M)--O. Thus (2) holds and the proof is complete.

5. Coincidence of ordinary and spheric measure.lengths for
certain sets. Before proeeeding to our third theorem we find it
appropriate to interpose the following

Lv,iM. Given n R a locally rectifiable uni-spheric cu,ve ’(t),
let S, and A, denote respectively the ordinary and spheric measure-
lengths induced by r. Then S,(X)--,(X) for every bounded Borel
set X consisting eclusively of points of continuity for

PROOF. It is enough to show that S,(X)
_
,(X), the opposite

inequality being obvious. Since S,(X) is the supremum of the values
of S, for closed subsets of X and similarly for //,(X), we may assume
without loss of generality that X is a nonvoid closed set. Let D be
any bounded open set containing X, so that S,(X) and ,(X) are
respectively the infimum of S,(D) and that of I,(D). Let us keep
D fixed for the moment and let be an arbitrary positive number.
We shall denote by J closed intervals, and by s(J) and (J) the
ordinary and spheric lengths of the curve r over J respectively. By
hypothesis we can associate with each point t of X a neighbourhood
N(t), i.e. an open interval with centre t, such that 2(J)(lq-)s(J)
whenever JN(). In fact we need only choose N($) so short that
r(a)r(b) (1+) r(J) for every J- [a, b] C N(t). We write
for the neighbourhood of t with length half as large as that of N(t).
In virtue of the Heine-Borel covering theorem there exists a finite
nonvoid subset {t,---, t} of X such that the intervals M(t),..., M(t)
together cover the set X. Denoting by 25 the smallest of the lengths
of these k intervals we easily see that if a closed interval J with
length <5 intersects X, then necessarily 2(J)_(l+)s(J).

Now S, and /, coincide respectively with the outer measures s*
and 2* induced by the additive interval-functions s(J) and (J), as
remarked in V3(4 and 5). We can therefore find in D a finite non-
overlapping sequence J,---,J of closed intervals with lengths less
than 5, in such a way that (J)+.--+2(J)>/l,(D)--s. We may
suppose that the first p of these n intervals intersect X and the
remaining ones do not, where p is some positive integer not exceeding
n. Then (J) (1+s)s(J) for every i-1, 2,..., p by what has already
been proved, and consequently

2(J1)-k +2(Jp) (1 +s)S,(D).
On the other hand it is clear that 2(J+)+.--+(j) does not exceed
i,(D--X) if p< n. Hence
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A.(X) A,(D)< a(J1)+ +a(J,)+e __--< (I+t)S,(D)+A,(D--X)+e.
Since is arbitrary, this readily gives 2A,(X)S,(D)+A,(D). So
far he se D has been kept fixed. We now make it vary arbitrarily
and obtain at once 2A,(X) :_< S,(X)+A,(X), i.e. A,(X)< S,(X), which
completes the proof.

6. Decomposition theorem for spheric measureolenth. The
above lemma ogegher wih our second heorem enables us to deduce
finally the following third

THEOREM. Given an additive set-function t, finite and nonnega-

tire, and given in R a locally rectifiable unit-spheric curve (t),
let Q be the set of the points of spheric interjaeenee for , and write
G(J)=r(a)o(b) for every closed interval J=[a, bJ. Then the pointa
t of Q at which (t)G(t) and (g)A,(t)exist and coincide, form a Borel
set N such that
( 5 ) fi(Q--N): A,(Q--N):O,
where A, means as before the spheric measure-length determined by 7.

Furthermore, ifH denotes the Borel set of the points t at which
(u)G(t)= +oo, we have for any bounded Borel set X in Q

( ) f(V)G’(t)dz(t).
X

PROOF. Write F(J)----I r(J) for closed intervals J and let C be
the set of the points of continuity of ’(t). It is readily seen that
if one of (g)F(t) and (g)G(t) exists at a point t of C, then the other
also exists and the two values are equal. Thus (l)G’(t) exists almost
everywhere () in C, since the same is true of (t)F(t) on account
of (2). Suppose now that XC. Then the preceding lemma gives
A,(X)=S,(X) as well as A,(HX)=S,(HX), and the formula (6) is a
direct consequence of (3). (In ,q4 we only considered plane curves.
But needless to say, this restriction is not essential for the validity
of the two theorems of that section.)

This being so, let p be any point of Q-C, so that ’(p+)’(p--).
It is easy to see that (l)G(p) exists and is given by
( 7 )
If in particular p({p}) vanishes here, then (g)G(p):+oo; so that pert
and hence (6)is manifest when the set X is specialized to {p}. If
on the other hand ({p})0, then (7) shows (g)G(p) finite; so that p
does not belong to H and accordingly (6) reduces for X----{p} to
A,(X)--’(p--)o’(p+). But the last equation is true by virtue of the
lemma of 3, since the curve r is spherically interjacent at p by
hypothesis. The set Q-C being evidently countable, we have thus
verified that (6) holds for XQ-C.

Now the case of general X is readily reduced to the two cases
XC and XQ-C treated already, by expressing X as the join of



XC and X--C. This proves (6) completely. As we may observe, we
have also proved that (p)G(t) exists almost everywhere (/) in Q. It
follows furthermore from (6) that 7(HQ) vanishes.

It remains to derive (5). For this purpose we write / for the
Borel set of the points t at which we have (/2)/I(t) %oo, and find
by the decomposition theorem of [18 that, for every bounded Borel
set X in Q,

( 8 )

Replacing X by HX here, we deduce in view of 7(HQ)--0 that/I,(HX)
--A,(HKX). Similarly we obtain /I,(KX)=/I,(HKX) from (6) with
the help of the relation/(K)--0, which holds on account of Lebesgue’s
theorem of [1]4. It follows readily that the integral in (8) coincides
with that in (6). From this we infer easily that 7(Q--N)-0 for the
set N of the assertion. Consider now the special case in which
XQ-N. Then (8) reduces to //,(X)=//,(KX). Combining the last
equation with /I,(KX)----/I,(HKX) proved already, in which the inter-
section HKX must be void by definition of the set N, we get at once
A,(X)--O. It follows finally that //,(Q-N)--0, which completes the
proof of our theorem.
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