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1. D. Blackwell [1] established, among others, the following
theorem: If fl,f.,...,f are integrable with respect to a non-atomic
probability measure u on a measurable space (X, I), then there is a
sigma-subfield on which u is non-atomic and

( 1 ) ff(x) du(x)--u(D)_;f() du(), i--1, 2,...,
D X

for every De. It is important in the theory of statistics that the
theorem of Blackwell implies the well-known Lyapnov convexity
theorem on the ranges of vector measures2

Since the theory of von Neumann algebras of finite type is
recognized as a non-commutative extension of the probability theory,)

and since (1) is equivalent to

(2) E[f ] --E[f], i----1, 2, n,
where E[g]J (respectively E[g])is the conditional expectation of
g conditioned by (respectively the expectation of g), it may be
observed with some interests that the Blackwe|l theorem has a non-
commutative extension with the same words in the following

THEOREM. If A is a continuous finite yon Neumann algebra
with a faithful normal trace r, and if al, as,.. ", a, are hermitean
elements of A with

( 3 ) r(a,)--0, i--1, 2,--., n,
then there is a continuous subalgebra B such as

(4) a--O, i--1,2,...,n,
where a is the conditional expectation of a conditioned by B in
the sense of

If A is abelian, the theorem becomes the theorem of Blackwell
in the above. Moreover, the proof of the theorem can be carried
out in the same method of Blackwell with a few minor modifications,
as will be seen in the below.

1) Osaka Gakugei Daigaku.

2) Tokyo Institute of Technology.
3) Lyapnov’s theorem and the allied topics are discussed in a recent exposition

[3] of Dubins and Spanier, where Lyapnov’s theorem is given a proof without appeal-
ing the theorem of Blackwell.

4) The terminology of J. Dixmier [2] will be used without any explanation. A
list of non-commutative generalizations of theorems on additive set functions will be
found in [4],
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2. As Blackwell did, the proof of the theorem is reduced to the
following simplest case:

LEMMA 1. For A sta$ed in the theorem, if a is an hermitean
element of A with r(a)-0, then there is a continuous subalgebra B
satisfying

(4’) a*--0.

It will be shown at first that Lemma 1 implies the theorem.
By Lemma 1, for the given A and a--a, there is a continuous sub-
algebra B satisfying (4’). For B and E[a.]B], Lemma 1 also
guarantees that a continuous subalgebra B, satisfies E[E[a2]B]
--0. Since B,. is a subalgebra of B, a property of the conditional
expectation implies

E[a,.I B2] :E[E[a21B, B2J :0,
as required. Inductively, there is a sequence of subalgebras BB
:>...B, and B:B, has the required properties by the construc-
tion, which proves the theorem.

To prove Lemma 1, it requires that the following variant of the
Bisection Theorem holds for finite von Neumann algebras:

LZMMA 2. If A is continuous finite, if a is an hermitean
operator of A satisfying r(a)--O, and if e is a projection of A with
r(ae)--0, then there is a projection pe such that

r(ap)--O,(5)
and

1 r(e).( 6 )

It will be shown here that Lemma 2 implies Lemma 1. Putting
e----l, Lemma 2 insures that there is a pair of projections p and
satisfying (5) such that p-p,.= 1 and r(p) =r(p,)-- 1/2. Again, put-
ting e--pz (for i--1, 2), there is a set of mutually orthogonal projec-
tions p, p,.,., p,., and p,., satisfying (5) and v(p)-- for --1, 2, 3, 4.
Inductively, one has sets of mutually orthogonal projections
:/2’} for i-l, 2,.-. satisfying (5) and r(p,)-(1/2)’ (for 12’). If
C, is the yon Neumann subalgebra generated by {p113"2}, then
CC,..... It is obvious that C, satisfies E[a]C,]=O since every
projection of C satisfies (5). Let C(R) be the yon Neumann subalgebra
generated by {C.}, then
(7) [E[alCln--1,2,...,
is a martingale in the sense of [6J. Since E[alC,J--0 for n=l, 2,...
and since (7) is a simple martingale, E[alC(R)]--O by the martingale

5) For printing convenience, the notation of probabflists is used here. For prop-
erties of the conditional expectation, cf. [SJ and [6].



theorem.6) Putting B--C(R), B becomes the subalgebra satisfying the
required properties of the lemma, since it is obvious by the construc-
tion that B is non-atomic.

REMARK 1. It will be shown here that B can be chosen maximal
among such subalgebras in Lemma 1. Let be the collection of all
continuous von Neumann subalgebras satisfying (4’). Then is a
non-void inductively ordered set by inclusion according to Lemma 2.
Hence, there is a maximal continuous von Neumann subalgebra which
satisfies (4’).

REMARK 2. It is also possible to require, with a few modifica-
tions in the above proof, that the von Neumann subalgebra B is
contained in the commutor (a)’ of a, i.e. each element of B commutes
with a.

3. It remains to show that the usual Bisection Theorem for
measure spaces implies the general Lemma 2.7) Let B be an abelian
von Neumann subalgebra containing the given e. Then B can be
thought of the multiplication algebra on the spectrum of B with
the measure r. If a(x)=r(a), then a defines a measure on Which
is absolutely continuous with respect to r. Hence the usual Bisection
Theorem implies the existence of a projection p which satisfies the
requirements of Lemma 2.

4. In the remainder, it will be shown briefly that Lemma 1 has
an another proof without appealing Lemma 2.

At first, using the Jordan decomposition a--a’--a", one can define
two positive linear functionals p’(x)=r(a’x) and p"(x)--r(a"x) with
their supports e’ and e" respectively. Under these definitions, it is
not hard to see that the following fact holds: For any non-zero
proection p’<:e’, there is a non-zero projection p"<e" such as
=p"(p"). Hence, putting p=p’+p", there is a projection p such
that p satisfies (5) and

Let be the collection of all von Neumann subalgebras satisfying
(4’). Then is an inductively ordered set by inclusion and non-void
by the above fact. Hence there is a maximal yon Neumann subal-
gebra C in . It is sufficient to show that C is continuous.

If C contains an atom p, then the above argument also guaran-
tees that there is a non-zero projection q<p such as r(aq)=0. Since
p is an atom of C, q is clearly excluded by C, whence the von
Neumann subalgebra generated by C and p contains C properly and
belongs to , which contradicts the maximality of C.

6) A martingale is called an M-net in [6]. The martingale theorem of Doob is
extended for operator algebras in [6, Theorem 2].

7) It is noteworthy that a similar argument admits to derive Lemma 1 from the
usual Blackwell Theorem,
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