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65. On Neumann Problem for Laplace-Beltrami Operators

By Seizé ITO
Department of Mathematics, University of Tokyo, Tokyo
(Comm. by Z. SUETUNA, M.J.A., June 12, 1961)

§1. Introduction. In this paper, we deal with the second boundary
value problem (Neumann problem) in compact subdomains of Rieman-
nian spaces. Let M be an m-dimensional orientable Riemannian mani-
fold of class C* with metric tensor || g,,(x)||, and let D be a subdomain
of M whose closure D is compact and whose boundary S consists of
a finite number of (m—1)-dimensional hypersurfaces of class C.. We
denote by A the Laplace-Beltrami operator with respect to || g,,(x)||:

Au(z)=—1_ F(_) 2 i[«/_ (@) 9'(z) a“("’)] for ueCz(D)
where ||9(@)1|=I19.(a)|| " and g(z)=det || g, |, and by - the outer

normal derivative at any point on the boundary S of D.

Consider the second boundary value problem in D associated with
A:
1:1) Au=f in D, g%=¢ on S,

where f and ¢ are given functions defined in D and on S respectively.
The fundamental solution U(%, ,y) of the initial-boundary value prob-
lem of the parabolic equation:

ou =Au+f (t>0, xzeD)
(1.2) at s

Ui ="0, —a%=§0 (on 8)

is given in [2] (see also [1]). We shall show that the kernel func-
tion K(x,y) of the boundary value problem (1.1) is given by

(1.3) Kz, y)= f "(U(t, %, y)—|D|"'}d¢ whenever z=y

where | D| denotes the volume of D. Corresponding results in the
case of Dirichlet problem, or in the case where A in (1.1) is replaced
by A—c(x) (here c(x) is non-negative and not identically zero), are
contained in [2; §10]; in these cases, the term —| D|! in (1.8) should
be omitted.

§2. Main results. In order that the boundary value problem
(1.1) has a solution, the following condition is necessary:

(2.1) f F(z)do= f o(x) dS,
D §
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where dz(=+vg(x)dx!---dx™) and dS, respectively denote the volume
element in D and the hypersurface element on S with respect to the
metric given by ||g,(x)|. The necessity of (2.1) and the uniqueness
of solution of (1.1) up to an additive constant may be verified by
Green’s formula. We shall prove the following theorems.

THEOREM 1. Let U(t,z,y) be the fundamental solution of the
initial-boundary value problem (1.2). Then

(22) K@,v)= [ {(U,2,9)—D|dt

exists whenever xeD, yeD and z=y, and satisfies
(2'3) K(xy y)___K(y’ x)r
and the following quantities are finite:

@4)  M=swp [|K@v)|dy, M=sup [|K(,v)|dS,
zeD ‘D reD )

THEOREM 2. Assume that f(x) is Holder-continuous in D and

satisfies f | f(x) P dez< o0, that ¢(x) is Holder-continuous on S and that
D
(2.1) holds. Then the boundary value problem (1.1) has a solution
u(z) which 18 given as follows:
(25) wa)=— [ K(z, 1)/ @) dy+ [ K(z, y}p(w)ds,.
D S

We define the following notations whenever the right-hand side
of each formula makes sense:

(u, v)= | u(z) v(z) dx

D

huli={ [l s}’ ulo={ [l s},
uVuu—{ [ a“(") da}’,

IIIuIII—igqu(x)I, IIIuIIIs—ggglu(w)I-
THEOREM 3. The solution wu(x) of the problem (1.1) satisfies:
(2.6) lull< M| £ I1+MM)E | ¢ ls,
(2.7 ”u”sé(MxM‘z)*”f”"‘Mz”SD”s»
(2.8) 17wl < ME| S I4+M2 o]l
and
(2.9) %l <M | £ INI+M Al lls

§3. Proofs of Theorems. It is well known that there exists a
system of eigenvalues and eigenfunctions {i,, ¥.(z); n=0,1,2,-.-} of
the operator A associated with the boundary condition ayr/on=0, with
the following properties:
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(1) My,——2i, in D and %=o on § (n=0,1,2,-),

(3.2) ZA3=0< =< =2, <, limA, =00,
(3.3) Y(z)=|D|¥
and

(34) {¥,} is a complete orthonormal system in L*D);
furthermore, the fundamental solution U(¢,x,y) of (1.2) is non-nega-
tive and expressible by

(35) Ult, 7, 4)= 330 (2)¥u(v)
(see, for example, Theorem 10 in [2; p. 89]).

PROOF OF THEOREM 1. It may be seen from arguments in [2]
that

(3.6) f U(t,z,y)dy=1 and f U(t, 2, y)dS, < Mt
D S

for a suitable constant M independent of zeD, and that

3.7 sup U(t,z,y)<oo for any >0
>0, r(z, 32>

where 7(x, y) denotes the Riemannian distance between z and y. On
the other hand, it follows from (3.3), (3.5) and Schwarz’s inequality that
(38) |U@2y)—|D|'P<|UE 2,2)—|D|*|-| U y,9)—|D||
and

0< U(t, 2, 2)—| D]t < e 3 e~mip, ()t
n=1
e WU, z,2)—| D} for t>1.

(3.9)

Hence we have
(310) l U(t’ x, y)—l D I_l l
<e (UL z,9)—| DI} (UQ,9,9)—| D7} for t>1.

Combining this inequality with (3.6) and (3.7), we may see that K(x,¥)
in (2.2) is well defined if #, ye D and x=-y, and that M, and M, defined
in (2.4) are finite. (2.3) follows from (3.5) and (2.2). Theorem 1 is
thus proved.

PRrROOF OF THEOREM 2. Case 1: ¢=0. If such is the case, then
(2.1) means (f,¥,)=0. Hence we have

flx)= 2%«#,,(:1:) (mean convergence) where a,=(f, ¥,).

Therefore
U9 s dy=Sa e b (o) (by 35)
and hence, Ii)f we define u(x) by (2.5) (with ¢=0), we have
u(x)=— of wgan e~ () dtz—g ‘;—: (x) (mean convergence)

by means of (2.2). Hence, for any function h(z)e C3(D)(\CYD) satis-
fying
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[ 4hz) | dz< o and g_ﬁ=o on 8,
D

it holds that
(Ah, u)=— 3322 (Ah, ¥)= sl ¥)=(h, ).

n=1
Therefore, by virtue of properties of U(t,x,y) stated in [2], we get
9 f Uz, y) u(y) dy= f 4, U(t, =, y) w(y) dy
at
(8.11) » D
= [ Ut ) ) dy
D

(the subseript ¥ to 4 means to operate 4 to U(¢,x,y) as a function
of y) and accordingly

L
(312) [ U9 uw) dy—u@) = [ ‘& [ Ule,2,9) fv) dy.
D 0 D
Hence u(x) satisfies ou/orn=0 on S and oufot=Au—f (xze D); the
latter equation means Au=jf. Thus Theorem 2 is proved in case ¢=0.

Case 2: ¢ 1s of class C* on S and all partial derivatives of ¢
of the second order comstdered on S are Holder-continuous. In this

case, we may construct a function w(x) of class C* on D such that
owfon=¢ on S and that all partial derivatives of w of the second

order are Holder-continuous on D. Then
(3.13) Aw(z) dz= | ¢(x)dS,,
J ot da= |

and hence f—Aw is Holder-continuous in D and satisfies

f | f(#)— Aw(@) P de< o and f (f(2)— Aw(z)} dz=0.

D D
Hence the function v(z) defined by

wey=— [ K, 9){f@)— Aw@)}dy,
D

satisfies Av=f—Aw in D and dv/or=0 on S as proved above. On
the other hand, by similar computations to those in (3.11) and (3.12),
we may obtain

[ Utz ww) dy—uie)

_ f { f U(z,,9)- Aw(y) dy— f U(z,%,9) (%) ds,,} de

for any t>0. Hence, by (3.13),
[0t,5,5)~1 DI @) dy+| D1 [wly) dy—w(a)
D D

=ft|:f{U(r,x,y,)—‘lDl-l}Aw(y) d?/_f{U(T,w,y)—-]Dl‘l} so(y)dS,,]dr.
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Letting t—>oo, and using (2.2), (3.6), (8.9) and (3.10), we obtain
w(z)—c=— [ K(z,y)- dw(y)dy+ [ K(z,9)9(v)dS,
D S

where ¢=|D]! f w(y)dy. Hence the function u(x) defined by (2.5) is
D

equal to v(x)+w(x)—c which clearly satisfies (1.1).

Case 3: General case. We may construct a sequence {¢,(x)} of
functions on S such that each ¢, (x) satisfies the assumption for ¢(z)
in Case 2 and that lim ¢,(z)=¢(z) uniformly on S. We put

e= [ 9.@)dS.— [ o(2)dS. and f@=F(@)+c
Then we haves ’
f Jo(z) de= f ¢.(x) dS, and 71‘1:2 f(x)=f(z) uniformly in D.
HenceD(see Case 5) the function

B1)  u=—[ K@) L@ dv+ [ K@) e.0)dS,

satisfies Au,=f, in D and ou,/on=¢, on S, and hence, by similar
computations to (3.11-12), we get

w@)= [ U(t,2,9) u(y) dy
(3.15) )

- f t{ f Uz, 2, y) f(y) dy— f U(z, z,9) ¢.(%) dsy} dr

for any t>0. On the other hand, u.(x) defined by (3.14) converges
to u(x) defined by (2.5), as n— oo, uniformly on D. Hence, letting
n—>oo in (3.15), we obtain

u(x)= f U(t,x,y) u(y) dy

-/ {f Ue,%,9) @) dy— [ Ule,2,9) 9(9) dS,,} dr.

Hence, by means of the result of [2], u(x) satisfies ou/orn=¢ on S
and ou/ot=Au—f which means Au=jf. Proof of Theorem 2 is thus
complete.

PROOF OF THEOREM 3. By means of the uniqueness of solution,
u(x) is expressible by (2.5). Hence, if we put

w@=— [ K@9) f@)dy and w(o)= [ K@) os) dS,:

we have
(3.16) u() =u,(x) +uy(x).
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By means of Schwarz’s inequality and (2.4), we get
@ = [ 1K@ v)dy [ 1K@ )| F@)F =, [ 1K@, 9)]-| 7@ dy.
D D D

Hence by virtue of (2.3), (2.4) and Fubini’s theorem, we obtain

1) wlFsM [ [1K@)l | f@)Fdyde< 12| £
D D

Similarly we may show that

(3.18) 1w |lp = MM | S 1P,

(3.19) lue ||’ < MM, || ¢ |5

and

(3.20) lw. |t = M3 o][5

Hence, by (3.16), we obtain (2.6) and (2.7). (2.8) is proved as follows.
By means of Green’s formula and Theorem 2, we have

(| Puy|P=—(duy, u)=—(f, w) < || F -] ws ]
and

170 = [ 24Dy (o) ds, < oI5+ s

Accordingly, by (3.17) and (3.20), we get ||Fu, |]§M,* || £1] and ||Fu,||
<M} |l¢lls, which imply (2.8). Finally (2.9) is obvious from (2.4)
and (2.5).
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