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1. Introduction. In this paper, we deal with the second boundary
value problem (Neumann problem) in compact subdomains of Rieman-
nian spaces. Let be an m-dimensional orientable Riemannian mani-
fold of class C with metric tensor II gj(x)II, and let D be a subdomain

of whose closure D is compact and whose boundary S consists of
a finite number of (m--1)-dimensional hypersurfaces of class Cs. We
denote by A the Laplace-Beltrami operator with respect to

Au(x):- 1 i9 [/g(x)g’(x)iP(x) for u
4a-CC a’

where !1 a’()II-II a,Xm)I! - and a(z)=det II a,Xm) II, and by __a the outer

normal derivative a any poin on he boundary S of D.
0onsider the second boundary value problem in D associated wih

A:

(11) Au--f in D, ff- p on S,

where f and are given functions defined in D and on S respectively.
The fundamental solution U(t, , y) of he initial-boundary value prob-
lem of the parabolic equation:

O--U-U=Au+f (t>0, xD)
(1.2) at

ul,_-o-Uo, -- (on S)

is given in [2] (see a]so 1]). We sha]] show that the kernel func-
tion K(, y) of the boundary value problem (1.1) is given by

(1.8) K(x, )= { U(t, , )--IDi-q dt whenever

where IDI denotes the volume of D. Corresponding results in the
ease of Diriehlet problem, or in the case where A in (1.1)is replaced
by A--c(x) (here c(x) is non-negative and not identically zero), are
contained in [2; 10; in these cases, the term--] D - in (1.3)should
be omitted.

[}2. Main resuks. In order that the boundary value problem
(1.1) has a solution, the following condition is necessary:

(2.1) ff(x)dx=fv(x) dS
p
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(2.6)
(2.7)
(2.8)
and
(2.9)

3.

where dz(=4g(z)dxl...dxm) and dSx respectively denote the volume
element in D and the hypersurface element on S with respect to the
metric given by II g#(z)ll. The necessity of (2.1) and the uniqueness
of solution of (1.1) up to an additive constant may be verified by
Green’s formula. We shall prove the following theorems.

THEOREM 1. Let U(t, x, y) be the fundamental solution of the
initial-boundary value problem (1.2). Then

(2.2)

exists whenever xeD, yeD and xy, and satisfies
(2.3) K(x, y)--K(y, x),
and the following quantities are finite:

M,=su(2.4)

THEO 2. Assume $ha$ f() is H6lder-continus in D and

f f() dx<, $ha$ () is HSlder-continuous on S and tha$8asfie8

(2.1) holds. Then he boundary value oblem (1.1)h a solution
u(z) which is given folls:

fg(, )f() +fg(, )()S.(2.5)

We define the following notations whenever the right-hand side
of each formula makes sense:

dx
D

au(x) au(x) dx)II u II- lJg’’(m)
am’ ,

Ill Ill-up ()I, Ill Illeup ()I-

II II II Y II+() II w I1,
II II (,) II Y II +, II w il,

II II , II Y II+ II II

Ill u Ill M, Ill f ]II-FM Ill Ill.
Proofs of Theorems. It is well known that there exists a

system of eigenvalues and eigenfunctions {2, @(); n-0,1,2,-.-} of
the operator // associated with the boundary condition O@/3n=O, with
the following properties:
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(3.)

(3.2)

(3.3)
and
(3.) {.} is a complete orthonormal system in L-(D);
furthermore, the fundamental solution U(t,z, y) of (1.2) is non-nega-
tive and expressible by

(3.5) u(, , )= e-%()%()
--’0

(see, for example, Theorem 10 in [2; p. 89).
PROOF OF THEOREM 1. It may seen from arguments in

that

(3.6) f U(t, x, y) dy-- 1 and f U(t, m, y) dS
D

for a suitable constant M indendent of D, and that
(3.7) sup U(t, , y)< for any e>0

t0, r(x,

where r(x, y) denotes the Riemannian distance tween x and y. 0n
the other hand, it follows from (3.3), (3.5) and Schwarz’s inequality that
(8.8) U(t,,)-IDI-’I! U(t,,)-IDI-’I-I
and

o (t, m, m)-IDI- ::--
(3.9)

e-’:’-’{l,x,x)-lDl-’} for t>l.
Hence we have

(3.10) U(t, , y)- D -’e-:-){U(1,x,x)--[D[-’}{ {U(1,y,y)--JD-} for t>l.
Combining this inequality with (3.6) and (3.7), we may see that K(x, y)
in (2.2) is well defined if x, ye D and xy, and that M and M= defined
in (2.4) are finite. (2.3) follows from (3.5) and (2.2). Theorem 1 is
thus proved.

PROOF OF THEOREM 2. Case 1: 0. If such is the case, then
(2.1) means (Z @)=0. Hence we have

f(x)-- a,@,(x) (mean convergence) where a,=(f, ,).

Therefore

f U(t, x, y) f(y) dy- N a, e-’ .,(x) (by (3.5))
D

and hence, if we define u(x) by (2.5) (with 0), we have

u(x)---- Na, e-’,(x) dr----N ,,() (mean convergence)
=1 =1

by mns of (2.2). Hence, for any function h(x)C2(D)C(D) satis-
fying
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h=oand

it holds that

(Ah, u)--- ] --(Ah, @.)---- ] a,(h, @,)----(h, f).

Therefore, by virtue of properties of U(t,x, y) stated in [2], we get
0

(3.11) "
dy

(the subscript y to A means to operate A to U(t,x, y) as a function
of y) and accordingly

/ U(r, x,, y) f(y) dy.dr
D D

Hence u(x) satisfies 3u/3--0 on S and 3u/3t--Au--f (xeD); the
latter equation means Au--f. Thus Theorem 2 is proved in case 0.

Case 2:
of the second order considered on S are HSlder-continuous. In this

case, we may construct a function w(x) of class C" on D such that
3w/3a- on S and that all partial derivatives of w of the second

order are H01der-continuous on D. Then

D

and hence f--Aw is HSlder-continuous in D and satisfies

/ f(x,)-- Aw(x)i’ d.< and / {f(,)--Aw(,)} dx-- O.
D D

Hence the function v(x)defined by

f
satisfies Av--f--Aw in D and Ov/n--O on S as proved above. On
the other hand, by similar computations to those in (3.11)and (3.12),
we may obtain

fu(t,x,y) w(y) dy--w(x)

for any t0. Hence, by (3.13),

f[u(t’x’ Y)--I n -] w(y) dy+l n [-.(w(y)dy--w(x)
D D
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Letting t-co, and using (2.2), (3.6), (3.9) and (3.10), we obtain

(,)-- f(,).()+f(,,)()

where c-lDl-*fw()dy. Hence the function u(x) defined by (2.5)is
D

equal to v(x)+w(x)--c which clearly satisfies (1.1).
Case 3: General ce. We may construct a sequence [(x)} of

functions on S such that each .(x) satisfies the assumption for
in Case 2 and that lim (x)=x) uniformly on S. We put

Then we have

ff,(x) dx-fV,(x) dS, and lim f,(x)-- f(x) uniformly in n.

Hence (see Case 2) the function

(3.14) u.()=-f K(x, y) f.(y) dy+fK(x, yl v,(yl dS,

satisfies Au.=f. in D and 3u./3n-. on S, and hence, by similar
computations to (3.11-12), we get

u.(x) f U(t, x, y) u(y) dy

for any >0. On the other hand, u(x) defined by (3.14) converges

to u(x) defined by (2.5), as no, uniformly on D. Hence, letting
no in (3.15), we obtain

u(x) U(t, x, y) u(y) dy

dr.
0

Hence, by means of the result of E2J, u(x) satisfies Ou/On-- on S
and Ou/t=Au--f which means Au--f. Proof of Theorem 2 is thus
complete.

PROOF OF THEOREM 3. By means of the uniqueness of solution,
u(x) is expressible by (2.5). Hence, if we put

,()--f K(x, y) f(y) dy and ,(,)=f K(x, y) (y) dS,.
D

we have
(.6) u()-u,()+u,(,).
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By means of Schwarz’s inequality and (2.4), we get

f K(x, y) ldyf lK(x, Y) l-If(Y)ldyM,fl K(x, Y)i" If(y)12u,() dy.
D D D

Hence by virtue of (2.3), (2.4) and Fubini’s theorem, we obtain

D D

Similarly we may show that
(3.18)
(3.19)
and
(3.20)
Hce, by (3.16), we obtain (2.6) and (2.7). (2.8) is proved as follows.
By means of Green’s formula and Theorem 2, we have

and

On

Accordingly, by (3.17) and (3.20), we get [[ u, ]] M ] f]] and [Fu][
Mt ]]s, which imply (2.8). Finally (2.9) is obvious from (2.4)
and (2.5).
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