113. Note on Finitely Generated Projective Modules

By Yukitoshi Hinohara
Tokyo Metropolitan University
(Comm. by K. Shoda, M.J.A., Oct. 12, 1961)

It is well known that any projective module P over a local ring is free and that if P is finitely generated any generating set for P contains a basis. ${ }^{11}$ Recentely M. Chadeyras proved in [3] that any finitely generated projective module over a commutative quasisemilocal ${ }^{2)}$ integral domain is free. In this note we shall generalize his theorem to finitely generated projective modules over an indecomposable quasi-semi-local commutative ring.

Every ring considered in this note is commutative and has a unit element which acts as unit operator on any module.

Let S be a multiplicatively closed set not containing 0 of a (commutative) ring R. Then as usual we denote by R_{S} the ring of quotient with respect to S, and if $S=R-\mathfrak{p}$ for a prime ideal \mathfrak{p}, we write $R_{\mathfrak{p}}$ for $R_{R-\mathfrak{p}}$. Let M be an R-module, then the relation of couples (m_{1}, s_{1}), (m_{2}, s_{2}) where $m_{i} \in M, s_{i} \in S$:
"there exists $s \in S$ such that $s\left(s_{1} m_{2}-s_{2} m_{1}\right)=0$ " is an equivalence relation. We denote by M_{s} the set of equivalence classes. Then M_{s} may be considered as an R_{s}-module and $M_{s}=M \otimes_{R} R_{s}$. Further exists a natural map $\varphi: M \rightarrow M_{s}$ and the kernel of this map is the S-component of 0 in $M: \operatorname{Ker} \varphi=\{m \in M \mid$ there exists $s \in S$ such that $s m=0\}$.

Lemma 1. If P is a finitely generated projective module over a (commutative) ring R. Then ($0: P$) is a direct summand of R.

For the proof, we refer the reader to [4].
Definition. A ring R is called indecomposable if there exist no proper ideals \mathfrak{a} and \mathfrak{b} such that $R=\mathfrak{a} \oplus \mathfrak{b}$.

Corollary. Any finitely generated projective module $P(\neq 0)$ over an indecomposable ring R is faithful (i.e., $(0: P)=0$).

The following lemma is well-known.
Lemma 2. Let P be a projective module with a set of generators (p_{1}, p_{2}, \cdots). Then there exist a free module F with a basis (u_{1}, u_{2}, \cdots), and a submodule Q of F such that $F=P \oplus Q$ and $u_{i}=p_{i}+q_{i}, q_{i} \in Q$.

Lemma 3. Let F be a finitely generated free module over an indecomposable ring R, and let P, Q be submodules of F such that $F=P \oplus Q$. Then P is not contained in $m F$ for any maximal ideal

1) Cf. [1]. See also [5] for the infinite case.
2) A ring is called quasi-semi-local if it has only a finite number of maximal ideals.
m of R.
Proof. If P is contained in $m F$, we have $P=\mathfrak{m} P$. For: let p be any element of P, then $p=\sum m_{i} u_{i}, m_{i} \in \mathfrak{m}, u_{i} \in F$. If $u_{i}=p_{i}+q_{i}$, $p_{i} \in P, q_{i} \in Q$, then $p=\sum m_{i} p_{i}$ is contained in $m P$. Thus we have ${ }_{m} R_{\mathfrak{m}} P_{\mathfrak{m}}=P_{\mathfrak{m}}$. From this we have, by the well-known Nakayama's lemma, $P_{\mathfrak{m}}=0$. Therefore P is the ($R-\mathrm{m}$)-component of 0 in P, i.e., there exists an element $s \in(R-\mathfrak{m})$ such that $s p=0$ for any element p of P. Since P is finitely generated there exists an element $s^{\prime} \in(R-\mathfrak{m})$ such that $s^{\prime} P=0$ and this is a contradiction since P is projective hence faithful.

Proposition 1. Let P be a finitely generated projective module over an indecomposable quasi-semi-local ring R with only two maximal ideals m_{1} and m_{2}. Then P is free and the Z-module \bar{Z} $=Z\left(x_{1}, \cdots, x_{m}\right)$ generated, over the ring of integers Z, by a generating set $\left(x_{1}, \cdots, x_{m}\right)$ of P over R contains a free basis.

Proof. Suppose that p_{1}, \cdots, p_{n} generate P (over R) $p_{i} \in \bar{Z}$, and that any $n-1$ elements of \bar{Z} do not generate P. We shall prove that (p_{1}, \cdots, p_{n}) is a free basis for P over R. Let F be a free module with a free basis $\left(u_{1}, \cdots, u_{n}\right)$ and Q a submodule of F such that $F=P \oplus Q, u_{i}=p_{i}+q_{i}, q_{i} \in Q$. If $Q \neq 0$, there exists, by Lemma 3, an element $q_{1}^{\prime}=a_{1} u_{1}+\cdots+a_{n} u_{n}$ of Q such that $a_{s} \notin m_{1}$ for at least one index $s, 1 \leq s \leq n$. Similary there exists an element $q_{2}^{\prime}=b_{1} u_{1}+\cdots+b_{n} u_{n}$ of Q such that $a_{s^{\prime}} \notin m_{2}$ for at least one index $\mathrm{s}^{\prime}, 1 \leq s^{\prime} \leq n$. Let e_{1} and e_{2} be elements of R such that $e_{1} \notin \mathfrak{m}_{1}, e_{1} \in \mathfrak{m}_{2}, e_{2} \in \mathfrak{m}_{1}, e_{2} \notin \mathfrak{m}_{2}$. Now put $q^{\prime}=e_{1} q_{1}^{\prime}+e_{2} q_{2}^{\prime}=c_{1} u_{1}+\cdots+c_{n} u_{n}$. Then we have $c_{s} \notin m_{1}$ and $c_{s^{\prime}} \notin m_{2}$. If $s=s^{\prime},\left(u_{1}, \cdots, u_{s-1}, q^{\prime}, u_{s+1}, \cdots, u_{n}\right)$ is a free basis of F, since c_{s} is inversible in R. Let p be any element of P and $p=r_{1} u_{1}+\cdots+r_{s-1} u_{s-1}$ $+r_{s} q^{\prime}+r_{s+1} u_{s+1}+\cdots+r_{n} u_{n}$. Then we have that $p=r_{1} p_{1}+\cdots+r_{s-1} p_{s-1}$ $+r_{s+1} p_{s+1}+\cdots+r_{n} p_{n}$. Therefore P is generated by $n-1$ elements $p_{1}, \cdots, p_{s-1}, p_{s+1}, \cdots, p_{n}$ of \bar{Z}, and this is a contradiction. Therefore we may assume that $s<s^{\prime}$ and that $c_{s} \notin \mathfrak{m}_{1}, c_{s} \in \mathfrak{m}_{2}, c_{s^{\prime}} \in \mathfrak{m}_{2}, c_{s^{\prime}} \not \mathfrak{m}_{2}$. Then we have

$$
\begin{aligned}
q^{\prime}=c_{1} u_{1}+ & \cdots+c_{s-1} u_{s-1}+\left(c_{s}+c_{s^{\prime}}\right) u_{s}+c_{s+1} u_{s+1}+ \\
& \cdots+c_{s^{\prime}-1} u_{s^{\prime}-1}+c_{s^{\prime}}\left(u_{s^{\prime}}-u_{s}\right)+c_{s^{\prime}+1} u_{s^{\prime}+1}+\cdots+c_{n} u_{n} .
\end{aligned}
$$

Now ($u_{1}, \cdots, u_{s^{\prime}-1},\left(u_{s^{\prime}}-u_{s}\right), u_{s^{\prime}+1}, \cdots, u_{n}$) and ($u_{1}, \cdots, u_{s-1}, q^{\prime}, u_{s+1}, \cdots, u_{s^{\prime}-1}$, $\left(u_{s^{\prime}}-u_{s}\right), u_{s^{\prime}+1}, \cdots, u_{n}$) are free bases for F, since $c_{s+} c_{s^{\prime}}$ is inversible in R. Therefore P is generated by $n-1$ elements $p_{1}, \cdots, p_{s-1}, p_{s+1}, \cdots$, $p_{s^{\prime}-1},\left(p_{s^{\prime}}-p_{s}\right), p_{s^{\prime}+1}, \cdots, p_{n}$ of \bar{Z}. This contradiction proves that $Q=0$, and (p_{1}, \cdots, p_{n}) is a free basis of P.

Proposition 2. Let R be a quasi-semilocal indecomposable ring, $\mathfrak{m}_{1}, \cdots, \mathfrak{m}_{n}$ the set of maximal ideals and let P be a finitely generated projective module, $\left(x_{1}, \cdots, x_{m}\right)$ a set of generators of P. Then P is
free. Furthermore, if we take n elements e_{1}, \cdots, e_{n} of R such that $e_{i} \in \mathfrak{m}_{1} \frown \cdots \frown \mathfrak{m}_{i-1} \frown \mathfrak{m}_{i+1} \frown \cdots \frown \mathfrak{m}_{n}, \quad e_{i} \notin \mathfrak{m}_{i}, \quad$ and put $\bar{Z}=Z\left[e_{1}, \cdots, e_{n}\right]$ $\left(x_{1}, \cdots, x_{m}\right)$ (a submodule of P generated by $\left(x_{1}, \cdots, x_{m}\right)$ over a subring $Z\left[e_{1}, \cdots, e_{n}\right]$ of R), then \bar{Z} contains a free basis of P.

Proof. Let p_{1}, \cdots, p_{t} be elements of \bar{Z} such that p_{1}, \cdots, p_{t} generate P over R, but any $t-1$ elements of \bar{Z} do not generate P. We shall prove that $\left(P_{1}, \cdots, P_{t}\right)$ is a free basis of P. Let F be a free module with a basis $\left(u_{1}, \cdots, u_{t}\right)$ and Q a submodule of F such that $F=P \oplus Q, u_{i}=p_{i}+q_{i}, q_{i} \in Q$. Then it suffices to prove that $Q=0$. Suppose that $Q \neq 0$, and there exist, by Lemma 3, elements $q_{1}^{\prime}, \cdots, q_{n}^{\prime}$ of Q such that $q_{i}^{\prime} \not m_{i} F$. Put $q^{\prime}=e_{1} q_{1}^{\prime}+\cdots+e_{n} q_{n}^{\prime}=a_{1} u_{1}+\cdots+a_{t} u_{t}$. Then $q^{\prime} \notin m_{i} F$ for $i=1,2, \cdots, n$. Let \mathfrak{S}_{i} be the set of indices j such that $a_{i} \notin m_{j}$. Then $\bigcup_{i} \Im_{i}=\{1,2, \cdots, n\}$. Put $\overline{\mathfrak{S}}_{i}=\Im_{i}-\bigcup_{j=1}^{i-1} \Im_{j}=\{i(1), \cdots, i(s(i))\}$, and $e_{i}^{\prime}=e_{i(1)}+\cdots+e_{i(s(i))} e_{j}^{\prime}=0$ if $\overline{\mathfrak{S}}=\phi$. Then $\bigcup_{i=1}^{t} \Xi_{i}^{j=1}=\{1, \cdots, n\}$ and $\overline{\mathfrak{S}}_{i} \frown \overline{\mathfrak{S}}_{j}=\phi$ if $i \neq j$. Then we have that

$$
q^{\prime}=\left(a_{1}+e_{2}^{\prime} a_{2}+\cdots+e_{t}^{\prime} a_{t}\right) u_{1}+a_{2}\left(u_{2}-e_{2}^{\prime} u_{1}\right)+\cdots+a_{t}\left(u_{t}-e_{t}^{\prime} u_{1}\right)
$$

and that $a_{1}+e_{2}^{\prime} a_{2}+\cdots+e_{t}^{\prime} a_{t}$ is not contained in \mathfrak{m}_{i} for $i=1, \cdots, n$. Thus ($u_{1}, u_{2}-e_{2}^{\prime} u_{1}, \cdots, u_{t}-e_{t}^{\prime} u_{1}$) and ($q^{\prime}, u_{2}-e_{2}^{\prime} u_{1}, \cdots, u_{t}-e_{t}^{\prime} u_{1}$) are free bases of F over R, and therefore P is generated by $t-1$ elements $p_{2}-e_{2}^{\prime} p_{1}, \cdots, p_{t}-e_{t}^{\prime} p_{t}$ of \bar{Z}. This contradiction completes the proof.

Ppoposition 3. Let M be a finitely generated module over a quasi-semilocal ring R. If, for each maximal ideal \mathfrak{m} of R, the module $M_{\mathfrak{m}}$ over the ring $R_{\mathfrak{m}}$ is free, then M is R-projective. ${ }^{3)}$

Proof. Let $\left(m_{1}, \cdots, m_{n}\right)$ be a set of generators of M, F a free module with a basis $\left(u_{1}, \cdots, u_{n}\right)$. Let φ be an R-homomorphism of F onto M such that $\varphi\left(u_{i}\right)=m_{i}$, and K the kernel of φ. Then we have an exact sequence $0 \rightarrow K \xrightarrow{\phi} F \xrightarrow{\varphi} M \rightarrow 0$, where ψ is the inclusion map. Now let $m_{1}, \cdots, \mathfrak{m}_{t}$ be the set of maximal ideals. Then, since $\otimes_{R} R_{\mathrm{m}_{j}}$ is an exact functor, we have that, for each j, the sequence $0 \rightarrow K_{j} \xrightarrow{\psi_{j}} F_{j} \xrightarrow{\varphi_{j}} M_{j} \rightarrow 0$ is exact where we put $N_{j}=N_{\mathfrak{m}_{j}}$ for any module N. By hypothesis M_{j} is projective. Therefore this exact sequence splits, whence there exists a homomorphism $\Psi_{j}: F_{j} \rightarrow K_{j}$ such that $1=\Psi_{j} \psi_{j}$. First, we shall prove that K is finitely generated. We recall that, if K_{j}^{\prime} is the $\left(R-\mathfrak{m}_{j}\right)$-component of 0 in $K, K / K_{j}^{\prime}$ is an R-submodule of K_{j}. Now, if we denote by $u_{i j}$ the image of u_{i} by the natural map of F into F_{j}, there exist elements $s_{j} \in R-\mathfrak{m}_{j}$ such that $s_{j} \Psi_{j}\left(u_{i j}\right) \in K / K_{j}^{\prime}$ for each i and j. Let $k_{i j}$ be representatives of $s_{j} \Psi_{j}\left(u_{i j}\right) \bmod . K_{j}^{\prime}$, and Ψ_{j}^{\prime} a homomorphism of F into K such that $\Psi_{j}^{\prime}\left(u_{i}\right)=k_{i j}$. Let \bar{K}_{j} be the submodule of K generated by the set
3) Cf. Lemma 5 (p. 249) of [2].
$\left(k_{1 j}, \cdots, k_{n j}\right)$. Then K is the $\left(R-m_{j}\right)$-component of \bar{K}_{j} in K. From this, we have that K is generated by the set $\left\{k_{i j}\right\}$ where $i=1, \cdots, n$; $j=1, \cdots, t$. For: let \bar{K} be the submodule generated by the set $\left\{k_{i j}\right\}$, k any element of K. Then $\{r \in R \mid r k \in \bar{K}\}=(\bar{K}: k)=R$, whenec $k \in \bar{K}$. Now let k_{1}, \cdots, k_{m} be a set of generators of \bar{K}. Then we have $\left(\Psi_{j}^{\prime} \psi k_{i}\right)-s_{j} k_{i} \in K_{j}^{\prime}$, thus there exists an element $s_{j}^{\prime} \in\left(R-\mathfrak{m}_{j}\right)$ such that $\left(\left(s_{j}^{\prime} \Psi_{j}^{\prime}\right) \psi k_{i}\right)-s_{j}^{\prime} s_{j} k_{i}=0$ for $i=1, \cdots, m$. This implies that ($\operatorname{Hom}_{R}(F, K)$) $\circ \psi$ contains the identity map of $\mathrm{Hom}_{R}(K, K)$. Therefore the exact sequence $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$ splits and thus M is projective.

Added in Proof: Prof. S. Endo has obtained the same results as our Prop. 2 and 3.

References

[1] H. Cartan and S. Eilenberg: Homological Algebra, Princeton Univ. Press (1956).
[2] P. Cartier: Questions de rationalité de diviseurs en géométrie algébrique, Bull. Soc. Math. France, 86, 177-251 (1958).
[3] M. Chadeyras: Sur les anneaux semi-principaux ou de Bezout, C. R. Acad. Sc., 2116-2117 (1960).
[4] C. Goldman: Determinants in projective modules, Nagoya Math. J., 18, 27-36 (1961).
[5] I. Kaplansky: Projective modules, Ann. of Math., 68, 372-377 (1958).

