101. On the Existence of Periodic Solutions of DifferenceDifferential Equations

By Shohei Sugiyama
Department of Mathematics, School of Science and Engineering, Waseda University, Tokyo
(Comm. by Z. Suetuna, m.J.A., Oct. 12, 1961)

In a difference-differential equation

$$
\begin{equation*}
x^{\prime}(t+1)=a x(t+1)+b x(t)+w(t) \tag{1}
\end{equation*}
$$

we suppose that a and b are constant, and $w(t)$ is a continuous and periodic function of the period ω for $-\infty<t<\infty$.

Let $K(t)$ be a kernel function of (1), that is, a solution of (1) under the conditions $K(t)=0(-1 \leqq t<0), K(0)=1$, and $w(t) \equiv 0$.

In the sequel, the following condition is always supposed: every real part of all the roots of the characteristic equation

$$
e^{s}(s-a)-b=0
$$

is less than $-\delta$, where δ is a positive constant.
Then, $K(t)$ satisfies the equations

$$
\begin{array}{ll}
K^{\prime}(t+1)=a K(t+1)+b K(t) & (0<t<\infty) \\
K^{\prime}(t)=a K(t) & (0<t<1)
\end{array}
$$

and the inequality

$$
|K(t)| \leqq c e^{-\partial t} \quad(0 \leqq t<\infty)
$$

If we define a function $p(t)$ such that

$$
\begin{equation*}
p(t+1)=\int_{-\infty}^{t} w(s) K(t-s) d s \tag{2}
\end{equation*}
$$

we find that $p(t)$ is a periodic solution of (1) of the period ω, if we formally differentiate (2) and use the periodicity of $w(t)$. This is the fundamental idea in the following discussions.

The purpose of this paper is to discuss the existence of periodic solutions of the equation (1) which has a term $f(t, x, y, \mu)$ or $\mu f(t, x, y)$ instead of $w(t)$. We will establish the following theorems.

Theorem 1. In the equation

$$
\begin{equation*}
x^{\prime}(t+1)=a x(t+1)+b x(t)+f(t, x(t+1), x(t)) \tag{3}
\end{equation*}
$$

where a and b are constant, we suppose that $f(t, x, y)$ satisfies the following conditions;
(i) $f(t, x, y)$ is continuous for any t, x, y and $f(t, 0,0)$ does not identically vanish;
(ii) $f(t, x, y)$ is a periodic function of t of the period ω, where ω is a positive constant;
(iii) $f(t, x, y)$ satisfies Lipschitz condition such that

$$
\left|f\left(t, x_{1}, y_{1}\right)-f\left(t, x_{2}, y_{2}\right)\right| \leqq k\left(\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right)
$$

for any $t, x_{1}, x_{2}, y_{1}, y_{2}$, where k is a constant.
Then, there exists a periodic solution of (1) of the period ω, provided that $2 c k / \delta$ is less than 1.

Theorem 2. In the equation

$$
\begin{equation*}
x^{\prime}(t+1)=a x(t+1)+b x(t)+f(t, x(t+1), x(t), \mu), \tag{4}
\end{equation*}
$$

we suppose that $f(t, x, y, \mu)$ satisfies the following conditions:
(iv) $f(t, x, y, \mu)$ is continuous in (t, x, y, μ) for any t, x, y, and small $|\mu|$;
(v) $f(t, x, y, \mu)$ is a periodic function of t of the period ω;
(vi) $f(t, 0,0, \mu)$ and $f(t, 0,0,0)$ do not identically vanish;
(vii) $f(t, x, y, \mu)$ satisfies Lipschitz condition such that
$\left|f\left(t, x_{1}, y_{1}, \mu_{1}\right)-f\left(t, x_{2}, y_{2}, \mu_{2}\right)\right| \leqq k\left(\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|+\left|\mu_{1}-\mu_{2}\right|\right)$
for any $t, x_{1}, x_{2}, y_{1}, y_{2}$, and small $\left|\mu_{1}\right|,\left|\mu_{2}\right|$, where k is a constant independent on μ.

Then, there exist periodic solutions $p(t, \mu)$ of (4) and $p(t)$ of (4) as $\mu=0$, provided that $2 c k / \delta$ is less than 1. Furthermore, $p(t, \mu)$ uniformly converges to $p(t)$ for $-\infty<t<\infty$ as $\mu \rightarrow 0$.

Theorem 3. In the equation

$$
\begin{equation*}
x^{\prime}(t+1)=a x(t+1)+b x(t)+\mu f(t, x(t+1), x(t)) \tag{5}
\end{equation*}
$$

we suppose that $f(t, x, y)$ satisfies the same conditions (i), (ii), (iii) as in Theorem 1.

Then, there exists a periodic solution of (5) of the period ω, provided that $|\mu|<\delta / 2 c k$.

Proof of Theorem 1. In order to apply the successive approximation method, we define a sequence $\left\{x_{n}(t)\right\}_{0}^{\infty}$ as follows:

$$
\begin{equation*}
x_{n+1}(t+1)=\int_{-\infty}^{t} f\left(s, x_{n}(s+1), x_{n}(s)\right) K(t-s) d s \quad(n=0,1,2, \cdots) \tag{6}
\end{equation*}
$$

for $-\infty<t<\infty$.
Then, it follows that

$$
\begin{align*}
& \left|x_{n+1}(t+1)-x_{n}(t+1)\right| \leqq c k \int_{-\infty}^{t}\left(\left|x_{n}(s+1)-x_{n-1}(s+1)\right|\right. \tag{7}\\
& \left.\quad+\left|x_{n}(s)-x_{n-1}(s)\right|\right) e^{-\delta(t-s)} d s \quad(n=1,2, \cdots)
\end{align*}
$$

For $n=0$, we especially have an inequality

$$
\begin{equation*}
\left|x_{1}(t+1)-x_{0}(t+1)\right| \leqq c \int_{-\infty}^{t}|f(s, 0,0)| e^{-\delta(t-s)} d s \tag{8}
\end{equation*}
$$

Since $f(t, 0,0)$ is continuous and periodic for $-\infty<t<\infty$, there exists a constant M such that $|f(t, 0,0)| \leqq M$ for $-\infty<t<\infty$. Hence, we obtain from (8) that

$$
\begin{equation*}
\left|x_{1}(t+1)-x_{0}(t+1)\right| \leqq \frac{M c}{\delta} \tag{9}
\end{equation*}
$$

Successively applying (7) and (9), we inductively obtain the inequality

$$
\begin{equation*}
\left|x_{n+1}(t+1)-x_{n}(t+1)\right| \leqq \frac{M}{2 k}\left(\frac{2 c k}{\delta}\right)^{n+1}(n=0,1,2, \cdots) \tag{10}
\end{equation*}
$$

for $-\infty<t<\infty$. Hence, the inequality (10) shows us that the sequence $\left\{x_{n}(t)\right\}_{0}^{\infty}$ uniformly converges to a function $x(t+1)$ which is a continuous solution of

$$
\begin{equation*}
x(t+1)=\int_{-\infty}^{t} f(s, x(s+1), x(s)) K(t-s) d s, \quad(-\infty<t<\infty) \tag{11}
\end{equation*}
$$

provided that $2 c k / \delta$ is less than 1.
Now, it is proved that $x(t+1)$ is a periodic solution of the period ω. In fact, we obtain from (6) that

$$
x_{1}(t+1)=\int_{-\infty}^{t} f(s, 0,0) K(t-s) d s
$$

Then, by using a change of variable and the periodicity of $f(t, 0,0)$, we obtain

$$
\begin{aligned}
x_{1}(t+\omega+1) & =\int_{-\infty}^{t+\omega} f(s, 0,0) K(t+\omega-s) d s \\
& =\int_{-\infty}^{t} f(s, 0,0) K(t-s) d s=x_{1}(t+1)
\end{aligned}
$$

which means that $x_{1}(t+1)$ is a periodic function of the period ω. Now, we suppose that every function $x_{k}(t+1)(k=1,2, \cdots, n)$ is a periodic function of the period ω. Then, it follows that

$$
\begin{aligned}
x_{n+1}(t+\omega+1) & =\int_{-\infty}^{t+\omega} f\left(s, x_{n}(s+1), x_{n}(s)\right) K(t+\omega-s) d s \\
& =\int_{-\infty}^{t} f\left(s+\omega, x_{n}(s+\omega+1), x_{n}(s+\omega)\right) K(t-s) d s \\
& =\int_{-\infty}^{t} f\left(s, x_{n}(s+1), x_{n}(s)\right) K(t-s) d s=x_{n+1}(t+1)
\end{aligned}
$$

Thus, we inductively have the periodicity of all $x_{n}(t+1)(n=1,2, \cdots)$, which implies that $x(t+1)$ is a periodic solution of the period ω.

Next, we prove the unicity of $x(t+1)$. Suppose that there exist two solutions $x(t+1)$ and $y(t+1)$ of (11). Then, it follows that

$$
|x(t+1)-y(t+1)| \leqq c k \int_{-\infty}^{t}(|x(s+1)-y(s+1)|+|x(s)-y(s)|) e^{-\delta(t-s)} d s
$$

Let $M(t)$ be the maximum of $|x(s)-y(s)|$ over the interval $-\infty$
$<s \leqq t+1$. Then, we find that

$$
M(t) \leqq \frac{2 c k}{\delta} M(t)
$$

which is a contradiction, unless $M(t)$ does identically vanish, for $2 c k / \delta$ is less than 1. This proves the uniqueness of solutions of (11).

Finally, we establish that $x(t+1)$ satisfies the equation (3). Differentiating (11) and using the properties of $K(t)$, it follows that

$$
\begin{aligned}
x^{\prime}(t+1) & =f(t, x(t+1), x(t))+\int_{-\infty}^{t} f(s, x(s+1), x(s)) K^{\prime}(t-s) d s \\
& =f(t, x(t+1), x(t))+a \int_{-\infty}^{t} f K(t-s) d s+b \int_{-\infty}^{t-1} f K(t-1-s) d s \\
& =a x(t+1)+b x(t)+f(t, x(t+1), x(t)) .
\end{aligned}
$$

This completes the proof.
Proof of Theorem 2. By means of the same method as before, we can establish that there exists a periodic solution of (4), provided that $2 c k / \delta$ is less than 1. However, since the perturbed term has a parameter μ, the solution may be dependent on μ. Thus, by $p(t, \mu)$ we denote the solution. For the case $\mu=0$, we already proved the existence of a periodic solution under the same condition, so that we denote it by $p(t)$. From the definition of the successive approximation method, $p(t, \mu)$ and $p(t)$ satisfy the following integral equations respectively:

$$
\begin{aligned}
p(t+1, \mu) & =\int_{-\infty}^{t} f(s, p(s+1, \mu), p(s, \mu), \mu) K(t-s) d s \\
p(t+1) & =\int_{-\infty}^{t} f(s, p(s+1), p(s), 0) K(t-s) d s
\end{aligned}
$$

Then, it follows that

$$
\begin{align*}
& |p(t+1, \mu)-p(t+1)| \leqq c k \int_{-\infty}^{t}(|p(s+1, \mu)-p(s+1)| \tag{12}\\
& \quad+|p(s, \mu)-p(s)|+|\mu|) e^{-\delta(t-s)} d s .
\end{align*}
$$

Denoting by $N(t)$ the maximum of $|p(s, \mu)-p(s)|$ over $-\infty<s \leqq t+1$, (12) leads us to the inequality

$$
N(t) \leqq \frac{2 c k}{\delta} N(t)+\frac{c k}{\delta}|\mu| .
$$

Hence, we have

$$
\begin{equation*}
N(t)\left(1-\frac{2 c k}{\delta}\right) \leqq \frac{c k}{\delta}|\mu| \tag{13}
\end{equation*}
$$

Since $2 c k / \delta$ is less than 1 , the inequality (13) implies that $N(t)$ tends to zero as $\mu \rightarrow 0$ for any t over the interval $-\infty<t<\infty$. This means
that $p(t+1, \mu)$ uniformly converges to $p(t+1)$ for $-\infty<t<\infty$ as $\mu \rightarrow 0$.

Proof of Theorem 3. We define a sequence $\left\{x_{n}(t)\right\}_{0}^{\infty}$ for $-\infty<t$ $<\infty$ as in the proof of Theorem 1 with an exception that we substitute μf for f in (6). Then, by means of the same reason as before, we obtain the inequality

$$
\left|x_{n+1}(t+1)-x_{n}(t+1)\right| \leqq \frac{M}{2 k}\left(\frac{2|\mu| c k}{\delta}\right)^{n+1}(n=0,1,2 \cdots)
$$

which implies the uniform convergence of $\left\{x_{n}(t+1)\right\}_{0}^{\infty}$, provided that $|\mu|<\delta / 2 c k$. It is apparent that the limiting function $x(t+1)$ is a continuous and periodic solution of (5) of the period ω for $-\infty<t<\infty$.

Remark. In Theorem 1, by virtue of the inequality (10), we obtain an estimation for the limiting function $x(t+1)$ such that

$$
|x(t+1)| \leqq \frac{M c}{\delta-2 c k}
$$

for $-\infty<t<\infty$. Substituting $|\mu| k$ for k in the above inequality, we also obtain an estimation for the limiting function in Theorem 3.

