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In a difference-differential equation

( 1 ) x’(t q- 1) ax(t q- 1) q- bx(t) q- w(t),
we suppose that a and b are constant, and w(t) is a continuous and
periodic function of the period o for --o < t < .

Let K(t) be a kernel function of (1), that is, a solution of (1)
under the conditions K(t)--O (--lt<O), K(O)--I, and w(t)--O.

In the sequel, the following condition is always supposed" every
real part of all the roots of the characteristic equation

e’(s--a)--b--O
is less than --, where is a positive constant.

Then, K(t) satisfies the equations
K’(tq- 1)--aK(t-F 1)-FbK(t) (0 < t < oo),
K’(t)--aK(t) (0 < t < 1)

and the inequality
K(t) ce-" (0 t < oo).

If we define a funetion p(t) such that

2 ) p(t+ 1)=.fw(s)K(t--s)ds,
we find that p(t) is a periodic solution of (1) of the period o, if we
formally differentiate (2) and use the periodieity of w(t). This is
the fundamental idea in the following diseussions.

The purpose of this paper is to discuss the existenee of periodie
solutions of the equation (1) which has a term f(t, x, y, ) or pf(t, x, y)
instead of w(t). We will establish the following theorems.

THEOREM 1. In the equation

( a ) x’(tq- 1)-ax(tq- 1)q-bx(t)q-f(t, x(tq- 1), x(t)),
where a and b are constant, we suppose that f(t, x, y) satisfies the
following conditions;

f(t, x, y) is continuous for any t, x, y and f(t, O, O) does not
identically vanish;

(ii) f(t, x, y) is a periodic function of t of the period o, where
oo is a positive constant;

(iii) f(t, x, y) satisfies Lipschitz condition such that
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f(t, xl, yl)-- f(t, x., Y.)I k(]Xl- x2 ]--I Yl- Y2 I)
for any t, x, x., y, y., where k is a constant.

Then, there exists a periodic solution of (1) of the period o, pro-
vided that 2ck/ is less than 1.

THEOREM 2. In the equation

( 4 ) x’(t+ 1)=ax(t+l)+bx(t)+f(t, x(t+ 1), x(t), ),
we suppose that f(t, x, y, g) satisfies the following conditions:

f(t, x, y, g) is continuous in (t, x, y, g) for any t, x, y, and(iv)
small g

(v)
(vi)
(vii)

f(t, x, y, g) is a periodic function of t of the period o;
f(t, 0, 0, g) and f(t, O, O, O) do not identically vanish;
f(t, x, y, g) satisfies Lipschitz condition such that

f(t, Xl, y, g)-- f(t, x., y., g.)l k([x-- x. [+IYl- Y. TIg-g. I)
for any t, x, x., y, y., and small ]g I, ]g I, where k is a constant inde-
pendent on g.

Then, there exist periodic solutions p(t, g) of (4) and p(t) of (4)
as g--O, provided that 2ck/ is less than 1. Furthermore, p(t, g)
uniformly converges to p(t) for --o t-< o as g->O.

THEOREM 3. In the equation

5 ) x’(t+ 1)--ax(t+1)+bx(t)+zf(t, x(t+ 1), x(t)),
we suppose that f(t, x, y) satisfies the same conditions (i), (ii), (iii)
as in Theorem 1.

Then, there exists a periodic solution of (5)of the period o, pro-
vided that g < /2ck.

Proof of Theorem 1. In order to apply the successive approxi-
mation method, we define a sequence {x(t)}F as follows"

x0(t+l)--0,

(6) x+(t+l)-ff(S, Xn(S+l),x(s))K(t--s)ds (n-0, 1, 2,- .)

:for o <: t <: o.

(7)

Then, it follows that

lxn/(t+l)-xn(t+l)l

+lx,,(s)-- x,_(s) l)e-<’-’)ds (n- 1, 2,...).
For n-0, we especially have an inequality

8 x(t- 1)-- Xo(t

Since f(t, 0, 0) is continuous and periodic for o < t < o, there exists
a constant M such that If(t, O, 0) 1M for o < t < o. Hence, we
obtain from (8) that
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( 9 ix(t_l_l)_xo(t+l) Mc.
Successively applying (7) and (9), we inductively obtain the inequality

(10) {x+,(tq-1)--x(tq-l> <: M( 2ck.)’+’(n_O 1, 2,...)--2k,

for --o <t< o. Hence, the inequality (10) shows us that the sequence
{x(t)} uniformly converges to a function (tq- 1) which is a continu-
ous solution of

(t-+-l)--.]f(s, x(sq-1), x(s))g(t--s)ds, (--o < t < o),(11)

provided that 2ck/ is less than 1.
Now, it is proved that x(t+l) is a periodic solution of the period

w. In fact, we obtain from (6) that

x,(t-t- 1) j-f(s, O, o)g(t-- s)ds.

Then, by using a change of variable and the periodicity of f(t, O, 0),
we obtain

o, O)K(t-+-o--s)ds

fs(s, o, O)K(t--s)ds=x,(th-1),

which means that x(tq-1) is a periodic function of the period o.

Now, we suppose that every function x,(t-l-1)(k--l, 2,..., n) is a
periodic function of the period w. Then, it follows that

x,/,(t+w+l)----( f(s, xn(s))g(t q- w-- s)ds

f 1), x(s+o))K(t--s)ds

=/f(s, x(s+l), x(s))K(t--s)ds--x/,(q-1).

Thus, we inductively have the periodicity of all (tq-1) (n l, 2,--.),
which implies that x(t+ 1) is a periodic solution of the period .

Next, we prove the unicity of z(t+l). Suppose that there exist
two solutions z(t+ 1) and y(t+l) of (11). Then, it follows that

x(t q- 1)-- y(t q- 1) ck/( x(s q- 1)- y(sq- 1) + z(s)-- y(s) )e-<’-)ds.

Let M(t) be the maximum of x(s)--y(s)l over the interval
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< s_ $+ 1. Then, we find that
2ckM(t) M(t),

which is a contradiction, unless M(t) does identically vanish, for 2ck
is less than 1. This proves the uniqueness of solutions of (11).

Finally, we establish that x(t+l) satisfies the equation (3).
Differentiating (11) and using the properties of K(t), it follows that

x’(t -- 1) f(t, x(t -- 1), x(t)) -- j-f(s, x(s -- 1), x(s))K’(t-- s)ds

f(t, x(t+ 1), 1--s)ds

ax(t -- 1)+ bx(t) -t- f(t, x(t -- 1), x(t)).
This completes the proof.

Proof of Theorem 2. By means of the same method as before,
we can establish that there exists a periodic solution of (4), provided
that 2ck/ is less than 1. However, since the perturbed term has a
parameter /, the solution may be dependent on /. Thus, by p(t,
we denote the solution. For the case /--0, we already proved the
existence of a periodic solution under the same condition, so that
we denote it by p(t). From the definition of the successive approxi-
mation method, p(t, ) and p(t) satisfy the following integral equa-
tions respectively"

1, g)--j-f(s, p(s+ 1, g), p(s, g), g)K(t--s)ds,p(t--

p(t+ 1)-ff(s, p(s+ 1), p(s), O)K(t-s)ds.

Then, it follows that

(12) p(t+ 1,

+ p(s, la)--
Denoting by N(t) the maximum of p(s, lu)-- p(s) over oo < s t+ 1,
(12) leads us to the inequality

N(t) 2ck N(t)+ ck

Hence, we have

(13) N(t) (1-- 2ck ) ck

Since 2ck/ is less than 1, the inequality (13)implies that N(t)tends
to zero as --> 0 for any t over the interval o < t < o. This means
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that p(t+ 1,/) uniformly converges to p(t+ 1) for o < t < o as
/--> 0.

Proof of Theorem 3. We define a sequence {x(t)} for -- < t
< as in the proof of Theorem 1 with an exception that we sub-
stitute zf for f in (6). Then, by means of the same reason as before,
we obtain the inequality

x (t+l)--x(t+l) < (.2c)+
/

(n 0,1, 2. ),

which implies the uniform convergence of [x(t+ 1)}, provided that
g] </2ck. It is apparent that the limiting function x(t+l)is a
continuous and periodic solution of (5) of the period for < t .

RnaK. In Theorem 1, by virtue of the inequality (10), we
obtain an estimation for the limiting function x(t+ 1) such that

Ix(t+ 1) Mc--2ck

for--< t<. Substituting ]g]k for k in the above inequality,
we also obtain an estimation for the limiting function in Theorem 3.


