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139. Some Results in Lebesgue Geometry of Curves

By Kanesiroo ISEKI
Department of Mathematics, Ochanomizu University, Tokyo

(Comm. by Z. SUETUNA, M.J.A., Dec. 12, 1961)

1. Borel.rectifiability of a curve on a set. We shall resume
the study of measure-theoretic properties of parametric curves set
forth in our recent notes [4 and [5. A curve 9, situated in a
Euclidean space R of any dimension, will be said to be Borel-
rectifiable (or B-rectifiable, for short) on a set E of real numbers,
when and only when E admits an expression as the join of a sequence
of sets which, if E is nonvoid, are relatively Borel with respect to
E and on each of which is rectifiable. In other words, E can be
covered by a sequence of Borel sets (in the absolute sense) on each
of whose intersections with E the curve 9 is rectifiable. As may be
immediately seen, this is certainly the case when is countably

rectifiable on E and at the same time continuous on E.
We are now in a position to generalize the theorem of [5J3

to the following form, the proof being the same as before.
THEOREM. For each function f(t) which is Borel-rectifiable on a

Borel set E, the multiplicity N(f; x; E) is a measurable function of
x and its integral over the real line coincides with (f; E) and
with F(f E).

Moreover, an inspection of part 2) of the proof for the theorem
of [5J2 leads readily to the following extension of that theorem.

THEOREM. If a curve . is Borel-rectifiable on a set E, then
(; E) coincides with F(p; E).

Let us make a few remarks. The function f(t), defined to be
0 or 1 according as t is rational or irrational, gives an example to
the last theorem when we consider the unit interval I--[0,1] for
instance. Since f(t) is neither continuous on I nor rectifiable (i.e. of
bounded variation) on I, this case is not covered by the theorem of
[5J2. On the other hand we cannot decide at present whether B-
rectifiabilit may be replaced in our result by countable rectifiability
or by a still weaker condition. But we can at least assert that B-
rectifiabilit of on E is not always necessary for the coincidence
of (; E) and F(p; E).

In fact, put I=-[0, 1] as above and choose a non-measurable set
AL Then the characteristic function of the set A, for which we
shall write g(t), is obviously countably rectifiable (that is, VBG) on

I and we find immediately that (g; I)--F(g; I)-0. We proceed to
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verify that g is not B-rectifiable on L Supposing that the contrary
were true, let us express , as we may, as the join of an infinite
sequence of nonvoid Borel sets B, B2,... on each of which is VB.
For each n---l, 2,..- we denote by C the set of the points of Bn
at which the subfunction (g; Bn), i.e. the restriction of g to the set
B, is discontinuous. We observe in passing that every point of C
must then be a point of accumulation for Bn. We shall now show
that, among the sets C1, C2,... thus constructed, there exists at least
one which is infinite. Indeed, if this were false, B--C would be a
Borel set for each . But evidently g is continuous on B--C.
Consequently ABn--C, which consists of all the points t of Bn--C
such that g(t)- 1, must be a Borel set. Since AB--(AB,--Cn)(ACn)
for each and since further AABAB2..., it follows that
is a Borel set. This contradicts the definition of A.

We can thus choose a natural number p such that Cp is infinite.
Consider in Cp any finite sequence tl,--., of k distinct points.
noting for =1, 2,..., k by W the oscillation of the function (g; B)
at the point tz, we see at once that W--1. This, in combination with
the evident relation L(g; B) W---. - W, shows that L(g; B) k.
Making k-- we deduce L(g; B)-- - o, which is incompatible with
the definition of the sequence B, B,,... and proves that, as we have
asserted, g is not B-rectifiable on L

2. Another definition of reduced measurelength. Given a curve
and a set E, consider any curve which coincides with on

The infimum of the measure-length L.(; E) for all such curves
will be called essential measure-length of over E and written
Lo(; E). We observe that Lo(; E), thus defined, depends solely on
the behaviour of within the set E. Now the reduced measure-
length (; E), introduced in [4]2, can be given a second definition
in terms of essential measure-length. This we shall state in the
form of a theorem as follows.

THEOREM. Given and E as above, represent E arbitrarily as
the join of a sequence (finite or not) of its subsets. Then (o; E)
coincides with the infimum of Lo(; z/)for all J.

PROOF. Let @ have the same meaning as above. The lemma
of [4J2 then implies (; E)=Z(@; E)g L.(@; E), and it follows at
once that ’(; E) Lo(; E). Here the set E may plainly be replaced
by any other set. Therefore (p; J) Lo(?; A) for each sequence
of the assertion. On the other hand we have (p; E) (p; /), since
the reduced measure-length is an outer Carathtiodory measure. Con-
sequently (p; E)Lo(o; /) and so, denoting for the moment by
(; E) the infimum of Lo(; z/) for all A, we get the inequality
(; E) o(p; E).
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We have to derive further the converse inequality. By definition,
8(9; E) is the infimum of L(9;zl) for all zl, so that it is sufficient
to verify that 0(9; )-L(9; J) for each t. But we easily infer
from the definition of o that o(; E)o(; ). Our theorem will
therefore be established if we show that 0(9, X) < L(9; X) for each
given set X, where we may and do assume the right-hand side finite.
In virtue of Lemma (4.1) stated on p. 221 of Saks 6, we may then
suppose further that the curve 9 is rectifiable (on the whole R).

This being so, let denote the set of all the points of dis-
continuity for 9. Then must be countable since 9 is rectifiable.
Accordingly 80(9; X) vanishes by definition, and therefore, writing
for short Y--X--, we find immediately

0(9, X) <: Eo(9; Y)+,-o(9, KX)-Eo(9; Y) < Lo(9; Y).
On the other hand Lo(9; Y)-<L.(9; Y)<L(9; Y)< L(9; X) on account
of the theorem of E4]4. Hence Eo(9; X)_<L(9; X), which completes
the proof.

3. Unit.spheric curves. In the rest of this note the space R
will be expressly assumed to be at least 2-dimensional. Suppose that
r(t) is a unit-spheric curve (or simply a spheric curve) in R, i.e.
let Ir(t) l-1 for every teR. The spheric length and the spheric
measure-length of r on a set E, we define as in [1_39 and in _2]5
respectively. As before they will be written A(r; E)and A.(riE),
where the reference to r may be omitted when this causes no am-
biguity. We are going to prove a theorem which will give, in terms
of spheric length, a third definition to the reduced measure-length
E(7; E) induced by r. Before doing so, however, we must establish
the following auxiliary result.

LEMMA. If a spheric curve is rectifiable on a set E, there
exists a rectifiable spheric curve which coincides with at all points
orE.

REMARK. As we observed in [1]40, a spheric curve is recti-
fiable on a set iff it is spherically rectifiable on the same set.

PROOF. Supposing E nonvoid as we may, consider its closure

E. We construct on E a spheric curve v(t) as follows. For each
point to of E we set simply o(to)--r(to). When on the other hand

to eE---E, we distinguish two cases according as to is a left-hand
point of accumulation for E or not. In the former case -(t) tends,
by hypothesis, to a definite limit as t tends to to in an increasing
manner by values belonging to E, and we define o(to) equal to this
limit. In the latter case to must be a right-hand point of accumu-
lation for E, and we define v(t0) correspondingly in an obvious way.

We then see immediately that is a spheric curve on E and that
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A(v; E)=A(r; E)< + oo. This allows us to assume from the first that
E is a nonvoid closed set. Of course, we may further restrict to
the case E=R.

To construct a spheric curve which conforms to the assertion,
we put in the first place (t)--,(t) for each teE, as required by the
assertion. We then extend the definition of (t) to the remaining
points as follows. Let I denote generically an interval contiguous
to E, that is to say, the closure of a connected component of the
nonvoid open set R--E. We have two cases to distinguish accord-
ing as I is a finite or infinite interval. In the second case, I plainly
has one of the two forms [p, +o) and (--o,p, and noting that
pE, we put simply (t)=(p) for all points tp of /, so that (t)
is constant on L

Passing to the first case let us write I=[a, hi, where aeE and
bE. If now (a)+’(b)O, we put a(t)=(1--,l)’(a)+.’(b) for each
point t of the open interval (a, b), the number being determined
by the equation t=(1--.t)a+.b. Then evidently a(t)O, and we define
(t) to be the direction of the vector a(t), i.e. we set (t)=la(t)l-a(t).
If on the other hand ’(a)+’(b)=O, we denote by c the middle point
of I and, in order to define $(t) on (a, b), we first determine (c) to
be any unit-vector of the space R different from both -(a) and ’(b).
Then neither ’(a)+(c) nor ’(b)+(c) vanishes, and so we can proceed
in the same way as above to define (t) on each of the two intervals
(a, c) and (c, b).

The spheric curve (t), thus defined over the real line and coin-
ciding with ’(t) on E, must be rectifiable. In fact, we can even
prove the stronger relation A(; R)=A(’; E). The verification is not
difficult and may be left out.

THEOREM. Given a spheric curve and a set E, let J denote
any sequence consisting of subsets of E and covering E. Then (’; E)
equals the infimum of A(’; )for all .

PROOF. Let Ao(E) stand for the infimum under consideration.
We need only derive Ao(E)(E), for the converse inequality is an
immediate consequence of the relation A(X) L(X) which holds for
every set X. We inspect the proof of the theorem of the foregoing
and find at once that the second paragraph of that proof remains

valid if we replace there the letters and o throughout by " and

Ao respectively and if, further, we use the above lemma instead of
Lemma (4.1) on p. 221 of Saks [6J. It is thus enough to establish
Ao(X) L(X) for each set X, the spheric curve " being now assumed
rectifiable (over the whole R).

With the help of the technique that was used in the proof of
the above lemma in order to define the curve (t), we may then
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repeat for T and E an argument essentially the same as that made
in the proof of the theorem of [4J4 for the construction of the curve
w(u). This enables us to suppose further that " is a continuous
curve.

Now the theorem of 44 ensures L,()L(X), while the
]emma of 35 gives A,()-L,() for every Borel set . Since
A,(X) is the infimum of A,(B) for all and similarly for the
measure-ength, it follows that A,()----L,(). Moreover we easily
prove Ao(X)A.(X), as for the lemma of [4J2. We thus obtain
Ao(X) L(X), completing the proof.

4. Reduced measure.bend of a curve over a set. For any curve
() situated in R, where m2 as was remarked in the foregoing, we may define as in 128 the bed of over a set K We
shall denote it by (; g) as before. By the reduced measure-bend
of . over g, written F(; ), we shall now understand the infimum
of the sum (; ), where d is an arbitrary sequence of subsets of
g which covers . When there is no fear of confusion, we may
write (g) and F(E) for these two quantities. It should be noted
that we have not assumed the lightness of the curve in the above.

LEMMA. Given and E as above, let 0-(11,12,’" be an arbi-
trary non-overlapping sequence of intervals and let us write for
short OE- (I1E, L.E, . Then 9(OE) 9(E).

PROOF. This extension of the proposition of [lJ31 may be
established in almost the same way as for that proposition.

THEOREM. The reduced measure-bend F(p; E), considered as a

function of the set E, is an outer measure of Carathdodory which
vanishes whenever E is a countable set.

PROOF. Clearly we have F(E)--0 for countable E. We must
verify further the following three conditions: (i) /’(X) F(Y) when-
ever XY; (ii) (z/J) F(/) for any sequence /of sets; (iii) ’(X Y)
’(X)-’(Y) for any pair of nonvoid sets X and Y with positive
distance. Conditions (i) and (ii) being obvious, we may confine our-
selves to (iii). By hypothesis there is a disjoint pair of open sets
A and B containing X and Y respectively. Let be a sequence
consisting of all the connected components of A, and let f be defined
similarly for B. Then as well as is plainly a disjoint sequence
of endless intervals, no element of intersecting any element of .
Accordingly, by our lemma, f2(N)fJ(N)q-f2(N) for each set
NcXY. If, therefore, we express X,.-Y arbitrarily as the join
of a sequence O of its subsets, then f2(O):> 7"(X)-kl’(Y). This im-
plies condition (iii) and completes the proof.

5. Outer bend of point sets. We define firstly a set-function
(X) for finite sets X in R (where m2) as follows. When X
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consists of at most two points, we set o(X)-O. Otherwise arrange
all the points of X in any distinct sequence Xo, X,...,x, and write
p-x--x_ for i-1,.-., n. We understand by w(X) the minimum,
for all such sequences, of the angle-sum p op_-}-. -kp_p. We
now extend o to infinite sets YR. Let namely w(Y) mean for
each Y the supremum of w(X) for all finite subsets X of Y. Thus
defined for all sets in R the function w is monotone non-decreasing,
as we readily see with the aid of [lJ25.

Given a set MR and a positive number , let us consider the
infimum of the sum o(0), where O is an arbitrary sequence of sub-
sets of M whose join is M and whose diameters are less than .
When -0, this infimum tends in a non-decreasing manner to a
limit, which will be denoted by o0(M) and termed outer bend of M
(cf. the definition of outer length stated on p. 54 of Saks [6]).
In view of monotonity of w we verify at oace that the outer bend
is an outer Carath$dory measure in R vanishing for countable sets.

Needless to say, the notion of reduced measure-bend introduced
in the preceding section is an analogue, in bend theory, of the reduced
measure-length. But there also exists in bend theory a notion which
is analogous to the Hausdorff measure-length and which we propose
to call Hausdorff measure-bend. To obtain the latter we need merely
replace, in the definition of Hausdorff measure-length, the diameters
of point sets in R by their w-values. The definition in full, as well
as some basic properties, of this new quantity will be given else-
where in the near future.
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