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139. Some Results in Lebesgue Geometry of Curves
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Department of Mathematics, Ochanomizu University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., Dec. 12, 1961)

1. Borel.rectifiability of a curve on a set. We shall resume
the study of measure-theoretic properties of parametric curves set
forth in our recent notes [4] and [6]. A curve ¢, situated in a
Euclidean space R™ of any dimension, will be said to be Borel-
rectifiable (or B-rectifiable, for short) on a set E of real numbers,
when and only when E admits an expression as the join of a sequence
of sets which, if E is nonvoid, are relatively Borel with respect to
E and on each of which ¢ is rectifiable. In other words, £ can be
covered by a sequence of Borel sets (in the absolute sense) on each
of whose intersections with E the curve ¢ is rectifiable. As may be
immediately seen, this is certainly the case when ¢ is countably
rectifiable on E and at the same time continuous on E.

We are now in a position to generalize the theorem of [5]83
to the following form, the proof being the same as before.

THEOREM. For each function f(t) which is Borel-rectifiable on a
Borel set E, the multiplicity N(f;x; E) is a measurable function of
x and its integral over the real line coincides with E(f; E) and
with I'(f; E).

Moreover, an inspection of part 2) of the proof for the theorem
of [5]§2 leads readily to the following extension of that theorem.

THEOREM. If a curve ¢ is Borel-rectifiable on a set E, then
E(p; E) coincides with I'(¢; E).

Let us make a few remarks. The function f(t), defined to be
0 or 1 according as t is rational or irrational, gives an example to
the last theorem when we consider the unit interval I=[0,1] for
instance. Since f(t) is neither continuous on I nor rectifiable (i.e. of
bounded variation) on I, this case is not covered by the theorem of
[6]82. On the other hand we cannot decide at present whether B-
rectifiability may be replaced in our result by countable rectifiability
or by a still weaker condition. But we can at least assert that B-
rectifiability of ¢ on E is not always necessary for the coincidence
of E(¢; E) and I'(¢; E).

In fact, put I=[0,1] as above and choose a non-measurable set
AcI. Then the characteristic function of the set A, for which we
shall write g(t), is obviously countably rectifiable (that is, VBG) on
I and we find immediately that 5(g; I)=1I"(g9; I)=0. We proceed to
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verify that g is not B-rectifiable on I. Supposing that the contrary
were true, let us express I, as we may, as the join of an infinite
sequence of nonvoid Borel sets B,, B,,--- on each of which ¢ is VB.
For each n=1,2,--- we denote by C, the set of the points of B,
at which the subfunction (g; B,), i.e. the restriction of g to the set
B,, is discontinuous. We observe in passing that every point of C,
must then be a point of accumulation for B,. We shall now show
that, among the sets C,, C,,- - - thus constructed, there exists at least
one which is infinite. Indeed, if this were false, B,—C, would be a
Borel set for each n. But evidently ¢ is continuous on B,—C,.
Consequently AB,—C,, which consists of all the points ¢ of B,—C,
such that g(¢)=1, must be a Borel set. Since AB,=(A4B,—C,)—(AC,)
for each n and since further A=AB,—AB,— ---, it follows that A
is a Borel set. This contradicts the definition of A.

We can thus choose a natural number p such that C, is infinite.
Consider in C, any finite sequence ¢,,---,%, of k distinct points. De-
noting for 1=1,2,---,k by W, the oscillation of the function (g; B,)
at the point ¢,, we see at once that W,=1. This, in combination with
the evident relation L(g; B,)= W,+-- -+ W,, shows that L(g; B,)=k.
Making k—+ o we deduce L(g; B,)=+ o, which is incompatible with
the definition of the sequence B,, B,,--- and proves that, as we have
asserted, g is not B-rectifiable on I.

2. Another definition of reduced measure-length. Given a curve
¢ and a set E, consider any curve ¥ which coincides with ¢ on E.
The infimum of the measure-length L,(y; E) for all such curves ¥
will be called essential measure-length of ¢ over E and written
Lyy; E). We observe that L(¢; E), thus defined, depends solely on
the behaviour of ¢ within the set E. Now the reduced measure-
length Z(¢; E), introduced in [4]82, can be given a second definition
in terms of essential measure-length. This we shall state in the
form of a theorem as follows.

THEOREM. Given ¢ and E as above, represent E arbitrarily as
the join of a sequence 4 (finite or not) of its subsets. Then E(p; E)
coincides with the infimum of Ly(¢; 4) for all 4.

PROOF. Let ¥ have the same meaning as above. The lemma
of [4]82 then implies &(p; E)=E(Y; E)< L,(¥; E), and it follows at
once that 5(p; £) < L(¢; E). Here the set E may plainly be replaced
by any other set. Therefore Z(¢; 4) < Ly(p; 4) for each sequence 4
of the assertion. On the other hand we have S(¢; E) < £(¢; 4), since
the reduced measure-length is an outer Carathéodory measure. Con-
sequently &(¢; E) < L(¢; 4) and so, denoting for the moment by
Ep; E) the infimum of Ly(¢; 4) for all 4, we get the inequality
E(py E)<Ep; E).
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We have to derive further the converse inequality. By definition,
E(p; E) is the infimum of L(g; 4) for all 4, so that it is sufficient
to verify that 5,(¢; £) < L(p; 4) for each 4. But we easily infer
from the definition of &, that £ (y; E) < Ey(p; 4). Our theorem will
therefore be established if we show that 5, (¢; X) < L(g; X) for each
given set X, where we may and do assume the right-hand side finite.
In virtue of Lemma (4.1) stated on p.221 of Saks [6], we may then
suppose further that the curve ¢ is rectifiable (on the whole R).

This being so, let K denote the set of all the points of dis-
continuity for ¢. Then K must be countable since ¢ is rectifiable.
Accordingly 5,(¢; KX) vanishes by definition, and therefore, writing
for short Y=X—K, we find immediately

By X) = Eop; Y)+Eo(p; KX)=E5(p; Y) < L(p; Y).
On the other hand Ly(¢; Y)<L,(p; Y)=<L(¢; Y)< L(¢; X) on aceount
of the theorem of [4]8§4. Hence &(¢; X) < L(¢; X), which completes
the proof.

3. Unit.spheric curves. In the rest of this note the space R™
will be expressly assumed to be at least 2-dimensional. Suppose that
r(t) is a unit-spheric curve (or simply a spheric curve) in R™, i.e.
let |7(t)]=1 for every teR. The spheric length and the spheric
measure-length of y on a set E, we define as in [1]839 and in [2]85
respectively. As before they will be written A(r; E) and 4,(1; E),
where the reference to y may be omitted when this causes no am-
biguity. We are going to prove a theorem which will give, in terms
of spheric length, a third definition to the reduced measure-length
E(r; E) induced by y. Before doing so, however, we must establish
the following auxiliary result.

LEMMA. If a spheric curve y is rectifiable on a set E, there
exists a rectifiable spheric curve which coincides with y at all points
of E.

REMARK. As we observed in [1]§40, a spheric curve is recti-
fiable on a set iff it is spherically rectifiable on the same set.

Proor. Supposing X nonvoid as we may, consider its closure

E. We construct on E a spheric curve u(t) as follows. For each
point t, of E we set simply u(t,)=r(t,). When on the other hand
t,e E—E, we distinguish two cases according as ¢, is a left-hand
point of accumulation for E, or not. In the former case 7(f) tends,
by hypothesis, to a definite limit as ¢ tends to ¢, in an increasing
manner by values belonging to E, and we define u(t,) equal to this
limit. In the latter case t, must be a right-hand point of accumu-
lation for E, and we define u(f,) correspondingly in an obvious way.

We then see immediately that v is a spheric curve on E and that
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A(w; E)=A(y; E)<+o. This allows us to assume from the first that
E is a nonvoid closed set. Of course, we may further restrict to
the case £+R.

To construct a spheric curve & which conforms to the assertion,
we put in the first place &(t)=r(t) for each te E, as required by the
assertion. We then extend the definition of £(t) to the remaining
points as follows. Let I denote generically an interval contiguous
to E, that is to say, the closure of a connected component of the
nonvoid open set R—E. We have two cases to distinguish accord-
ing as I is a finite or infinite interval. In the second case, I plainly
has one of the two forms [p, +o) and (—oo,p], and noting that
pe E, we put simply &(t)=¢&(p) for all points t=xp of I, so that &(t)
is constant on I,

Passing to the first case let us write I=[a, b], where ac £ and
beE. If now 7(a)+7(b)+0, we put o(t)=(1—2)r(a)+r(d) for each
point ¢ of the open interval (a,b), the number A1 being determined
by the equation t=(1—21)a+2b. Then evidently ¢(¢)-F0, and we define
&(t) to be the direction of the vector 4(t), i.e. we set &(t)=|a(t)]| a(?).
If on the other hand 7(a)+7(b)=0, we denote by ¢ the middle point
of I and, in order to define &(t) on (a,b), we first determine &(c) to
be any unit-vector of the space R™ different from both 7(a) and y(b).
Then neither y(a)+&(c) nor y(b)+&(c) vanishes, and so we can proceed
in the same way as above to define £(¢) on each of the two intervals
(a,c) and (c, b).

The spheric curve &(¢), thus defined over the real line and coin-
ciding with 7(t) on E, must be rectifiable. In fact, we can even
prove the stronger relation A(¢; R)=A(y; E). The verification is not
difficult and may be left out.

THEOREM. Given a spheric curve v and a set FE, let 4 denote
any sequence consisting of subsets of E and covering E. Then E(y; E)
equals the infimum of A(r; 4) for all 4.

PrROOF. Let A(FE) stand for the infimum under consideration.
We need only derive 4,(E)< 5(E), for the converse inequality is an
immediate consequence of the relation 4(X)>= L(X) which holds for
every set X. We inspect the proof of the theorem of the foregoing
§ and find at once that the second paragraph of that proof remains
valid if we replace there the letters ¢ and &, throughout by r and
A, respectively and if, further, we use the above lemma instead of
Lemma (4.1) on p.221 of Saks [6]. It is thus enough to establish
Ay(X) < L(X) for each set X, the spheric curve y being now assumed
rectifiable (over the whole R).

With the help of the technique that was used in the proof of
the above lemma in order to define the curve &(t), we may then
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repeat for y and £ an argument essentially the same as that made
in the proof of the theorem of [4]§4 for the construction of the curve
o(u). This enables us to suppose further that y is a continuous
curve.

Now the theorem of [4]§4 ensures L,(X)=<XL(X), while the
lemma of [3]85 gives 4,(B)=L,(B) for every Borel set B. Since
A.(X) is the infimum of A,(B) for all BDOX and similarly for the
measure-length, it follows that A4,(X)=L,(X). Moreover we easily
prove Ay(X)=<A4,(X), as for the lemma of [4]§2. We thus obtain
A(X) < L(X), completing the proof.

4. Reduced measure.bend of a curve over a set. For any curve
o(t) situated in R™, where m =2 as was remarked in the foregoing
8§, we may define as in [1]§28 the bend of ¢ over a set E. We
shall denote it by 2(¢; E) as before. By the reduced measure-bend
of ¢ over E, written Y(p; E), we shall now understand the infimum
of the sum Q(¢; 4), where 4 is an arbitrary sequence of subsets of
E which covers E. When there is no fear of confusion, we may
write (%) and V' (EF) for these two quantities. It should be noted
that we have not assumed the lightness of the curve ¢ in the above.

LEMMA. Given ¢ and E as above, let ©={1,,I,,---) be an arbi-
trary mom-overlapping sequence of imtervals and let us write for
short OE=(I,E, LLE,--->. Then QOFE)<Q(E).

Proor. This extension of the proposition of [1]§31 may be
established in almost the same way as for that proposition.

THEOREM. The reduced measure-bend Y (¢; E), considered as a
Junction of the set E, is anm outer measure of Carathéodory which
vanishes whenever E is a countable set.

PrOOF. Clearly we have 1'(E)=0 for countable E. We must
verify further the following three conditions: (i) V'(X)<Y(Y) when-
ever XCY; (ii) Y'([4]) =T (4) for any sequence 4 of sets; (iii) 7' (X~Y)
=Y (X)+TY(Y) for any pair of nonvoid sets X and Y with positive
distance. Conditions (i) and (ii) being obvious, we may confine our-
selves to (iii). By hypothesis there is a disjoint pair of open sets
A and B containing X and Y respectively. Let @ be a sequence
consisting of all the connected components of 4, and let ¥ be defined
similarly for B. Then @ as well as ¥ is plainly a disjoint sequence
of endless intervals, no element of @ intersecting any element of ¥.
Accordingly, by our lemma, Q(N)=Q(@N)+Q2(¥N) for each set
NCX-Y. If, therefore, we express XY arbitrarily as the join
of a sequence O of its subsets, then 2(60)=7(X)+7(Y). This im-
plies condition (iii) and completes the proof.

5. Outer bend of point sets. We define firstly a set-function
o(X) for finite sets X in R™ (where m=2) as follows. When X
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consists of at most two points, we set w(X)=0. Otherwise arrange
all the points of X in any distinet sequence =z, ,,---,%, and write
p,=%;—%;_, for 1=1,--.-,n. We understand by o(X) the minimum,
for all such sequences, of the angle-sum p,op,+---+p,.,¢p,. We
now extend o to infinite sets YCR™. Let namely w(Y) mean for
each Y the supremum of w(X) for all finite subsets X of Y. Thus
defined for all sets in R™ the function » is monotone non-decreasing,
as we readily see with the aid of [1]§25.

Given a set MCR™ and a positive number ¢, let us consider the
infimum of the sum w(@), where @ is an arbitrary sequence of sub-
sets of M whose join is M and whose diameters are less than e.
When &0, this infimum tends in a non-decreasing manner to a
limit, which will be denoted by w,(M) and termed outer bend of M
(cf. the definition of outer length stated on p.54 of Saks [6]).
In view of monotonity of w we verify at once that the outer bend
18 an outer Carathédory measure in R™ vanishing for countable sets.

Needless to say, the notion of reduced measure-bend introduced
in the preceding section is an analogue, in bend theory, of the reduced
measure-length. But there also exists in bend theory a notion which
is analogous to the Hausdorff measure-length and which we propose
to call Hausdorff measure-bend. To obtain the latter we need merely
replace, in the definition of Hausdorff measure-length, the diameters
of point sets in R™ by their w-values. The definition in full, as well
as some basic properties, of this new quantity will be given else-
where in the near future.
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