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4. Decomposition of Representations of the Three.
Dimensional Lorentz Group

By Nobuhiko TATSUUMA
(Comm. by K. KuNu(, M.Z.A., Jan. 12, 1962)

The purpose of the present paper is the explicit description of
decomposition of the unitary representations of the three-dimensional
Lorentz group, which are constructed on factor spaces, into irreducible
representations. We solve this problem by infinitesimal method. This
problem arises as one step of decomposing tensor products of irreducible
representations of the inhomogeneous Lorentz group into irreducible
ones. The proof of the results of the present paper and the details
about the last problem will be published in other papers.

1. In order to include the so-called spinor representations, we
consider the real special linear group G of second order. G is the
two-fold covering group of the three-dimensional Lorentz group.
Now we shall give some definitions which are necessary to describe
our problem and results exactly.

G is generated by three subgroups of the following types:

S- s(O)- (cos (t/2), sin (t?/2).
\ sin (t/2), cos (t/2)/’

2z 0_ 2z

D_ d+/-()_ (exp(/2), 0
0, exp (/2)

oo < < oo

(ch (t/2), sh (t/2).L-- l(t) +_
sh (t/2), ca (t/2)/’

oo < t < oo

For arbitrary unitary representation i}i of G, denote the corre-
sponding operators to the generators of Lie algebra with respect to
these parameters by H(S, ,), H(D, ,9), H(L, ) respectively.

The factor space S\G can be imbedded in G by the correspondence
of coset to its representative e or d +(5)s(t?) (0 < 5 < oo, z<<z). In the
same way, for the case of D\G, the element e or /(t)s(t) (--oo < t< oo,

zr < t?_< z) are representatives.
2. The representations to be decomposed are the so-called

induced representations of G from one-dimensional representations
of S or D, that is, exp(ikt)(k: integer or half-integer) of S, and
exp(ir) (r; real) of D, or ___exp(ir) for spinor case. The spaces of
these representations are L by the G-invariant measure / over the
factor space [2--S\G or D\G respectively, and the operator U of
representation is defined by a function a(o,g) over 9xG for any
element f(w) of L,: (Uf)(o)=a(w, g)f((o.g). The multiplier a(w, g)
is given as follows:
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In the case of /2-S\6: put

a(e, g)----- exp (ikO), where g-

In the case of [2--D\G: put
a(e, g) exp (i), for non-spinor case,

-+/-exp(ir), for spinor case,
where g-d+-()w. And finally put

o((.o, g) o(e, w. g).
Let us denote the representations constructed above by (k),

9(r), ,t(r) respectively.
:. Here we quote the well-known result of V. Bargmann

about irreducible unitary representations of G. They are classified
and denoted as follows:

(a) Principal series (non-spinor) C (1/4_< oo).
(a’) Principal series (spinor) C/ (1/4 < < oo).
(b) Supplementary series C (0 < < 1/4).
(c) Discrete series (non-spinor) D (n: integer, =0).
(c’) Discrete series (spinor) Dn (n: half-integer).
(d) Identity representation I (identity operator for all g).
The following results are valid:
(1) In the case of 9-C or Cn,

,(9) (H(D, 9)) 4- (H(L, ))-- (H(S, ))-- 1. I.
(2) The representation of S, which is the restriction of C,

C/, or D to S, can be written as a direct sum ,(R)p(k) of the
representations p(#)-exp(ikO) of S, in which multiplicity is one for
every k, and the summation by k runs over the set of

i) all integers for the representations (a), (b),
ii) all half-integers for (a’),
iii) integers which are between n and (sign n)co for (c),
iv) half-integers which are between n and (sign n)oo for (c’).
Moreover in these cases the operator F+-(9)=--H(D, 9)iH(L,

gives a mapping of the subspace corresponding to p(k) onto the
space corresponding to p(k+/-l), when the former is not trivial.

4. Using the above definitions and notations our results are
formulated as follows:

1) For any integer k,

1/4

where n are integers and
for k>_l,k>_n>_l,
for k--0, the first summand disappears,
for kg--l,k<_ng--1.

2) For half-integer k,
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where n are half-integers and
for k_> 3/2,/_> n >_ 3/2,
for k=+/-l/2, the first summand disappears,
for k_ -3/2,/_ n_ --3/2.

3) }l(r)-,D[2J Cdl,
/4

where n runs over all integers except 0, and the number [2J means
that the multiplicity is two.

4) 9(r)--D.[2 C;/dl,
1/4

where n runs over all half-integers.
We remark that in these decompositions, representations of the

supplementary series and the identity representation do not appear.
As for the continuous direct sums of these decompositions, we

can calculate the weight functions for fixed sets of eigenvectors.
In the non-spinor cases 1) and 3)they have very simple forms as
follows, although in the spinor cases 2) and 4) they are limits of
hypergeometric functions, and have complicated forms.

The case 1). The eigenvectors in the space corresponding to
_/_(ch ), and the weight function isp(0) are of the form of

((]
where a (1 (1/4))/.

The case 3). There are two independent families of eigenvectors,
:: (i sh t) and the other is gene-one of which is generated by _/)_, (i sh t), and the weight functions arerated by

(2)sh(a.=)]F(z+)F(z-)[-((ch(r.u))+sh(a.=)))- for the former,
(2)-sh(a.=)]F(z+)F(z-) for the latter,

where -- (1-- (1/4))/, z -(1/4)+i((a r {)/2).
5. Lastly we shall mention briefly about our principle of the

irreducible decomposition. For a unitary representation 9t of G, by
the property (2) of 2, we can separate the generating vector
belonging to D-component, by means of calculating the kernel
F(O) in the subspace corresponding to p(k) for the restriction of

to S. Next, irreducible components which are equivalent to
C? or C2/ can be obtained by eigenfunction expansion with respect
to A(t) in the space corresponding to p(0) or p(1/2) for the restric-
tion of 9 to S.


