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1. Curves straightenable on a set. In the present continuation
of our recent note [5 we shall derive some further measure-theoretic
properties of parametric curves. Throughout the note the space R
will be assumed at least 2-dimensional, while all the curves consider-
ed will be defined over R (unless stated to the contrary) and situated
in R. A curve (t) will be termed straightenable (or of bounded
bend) on a set E of real numbers iff the bend /2(9; E) is finite, and
locally straightenable (or of locally bounded bend) iff is straight-
enable on all linear closed intervals. Let us begin our argument with
a lemma which extends [164.

LEMMA. If a curve is straightenable on a set E as well as
bounded on E, it is rectifiable on the same set. In consequence, a
locally straightenable curve is locally rectifiable whenever it is locally
bounded.

REMARK. Simple examples show that the boundedness of on
E is essential for the validity of the assertion (cf. the remark of

1 64).
PROOF. By change of parameter if necessary, we may suppose

without loss of generality that E is a bounded set. Let I0 denote
generically an open interval. We shall show in the first place that
if 9(;IoE)<z/3, the curve is rectifiable on IoE and we have
L(V; IoE)2d([IoE), where for any set X in R we denote by d(X)
the diameter of X. For this purpose we may suppose L(IoE)
positive. It suffices to derive L(IE)2[(I)[ for each closed interval
I contained in I0 and whose endpoints belong to E. For it is obvious,
by definition of length, that L(IoE) is the suprernum of L(IE). We
now distinguish two cases according as the increment V(I) vanishes
or not. If (I)--O, then must be constant on the set IE and
hence L(IE)--O--21(I)[; indeed we should otherwise get the evident
contradiction [2(IoE)9(IE)zr. If on the other hand (I)0, then
L(IE)2[(I)[ follows easily by an argument similar to that of
_163. We leave the details to the reader.

Writing O--9(IoE) for an arbitrary Io---(a, b), we shall further
show that there exists in I0 a point c such that 9((a, c).E)O/2 and
2((c, b).E)O/2. Of course we need only consider the case >0. It
is clear that (i) the supremum of the bend 2(JE), where J ranges
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over the closed intervals in I0, coincides with 9(IoE)- and that (ii)
if I,..., I are any disjoint finite sequence of intervals in I0, then
9(IE)+...+9(IE)O (see the lemma of 54). Consider now
the set A of the points t of I0 such that 2((a, t). E)t/2. It follows
at once from (i) and (ii) that all the points of I0 sufficiently near
the point a certainly beloag to A. So that, if we put c-sup A,
then acb. But we cannot have c=b here, since otherwise (i)
would imply the absurd relation t--9(IoE)/2. Moreover, replacing
in (i) the interval I0 by (a, c), we find at once that 9((a, c). E)O/2.
It remains to examine the inequality tg((c, b).E)8/2. If this were
false, then the statement (i), where we replace I0 by (c, b), would
imply the existence of a point c’ subject to the conditions c<c’<b
and 9((c’, b).E)>t?/2. The last inequality, combined with (ii), would
give us tg((a, c’). E)<t/2, which evidently contradicts the definition of
the point c.

Hitherto the open interval Io has been variable. Let us now
fix it so as to comprise the set E (which is bounded by assumption),
and let us choose the point c whose existence has just been estab-
lished. The procedure that replaces I0 by the pair of intervals
(a,c) and (c,b) will now be repeated for each of (a,c)and (c,b)
separately; and so on we proceed until we obtain in I0 a finite dis-
joint sequence of open intervals K,..., K such that Io--(K... K)
is a finite set and such that 2(KE)</3 for i--1,..., p. Then we
must have L(KE)2d([KE)_2d([E) ior each i by what has
already been proved at the beginning. The assertion follows now from

L(E)L(KE)+... +L(KE)+2p d((2E)4p d([E) -.THEOREM. If a curve () is straightenable on a set E as well
as bounded on E, there exists a bounded, rectifiable, straightenable
curve (t) coinciding on E with (t) and satisfying the relations

L(; R)-L(; E) and /2(; R) -/2(; E).
PROOF. It follows from the foregoing lemma that is recti-

fiable on E. Assuming E nonvoid as we may, consider the curve

which is defined on the closure E of E, by means of the curve , in
precisely the same way as at the beginning of the proof for the

lemma of 5 3. Then it is readily found that L(o; E)--L(; E) and

9(; E)--9(; E). We may thus suppose from the first that E is a
nonvoid closed set (other than R).

To determine a curve conforming to the assertion, we put
in the first place (t)--(t) for each teE. Let now I be any interval
contiguous to E. We extend to I the definition of (t) by requiring
it to be linear on I when I is a finite interval, and to be constant
on I when I is infinite. We see at once that the curve , thus
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determined uniquely on the whole real line, fulfils the requirements
of the theorem.

2. Ixtension of a previous result. We gave in [-35 a suffi-
cient condition for the measure-length of a spheric curve to coincide
on a given set with the spheric measure-length of the same curve.
Now we have to extend that result to the following form, the proof
of which will be found even simpler than before.

LEMMA. If is a spheric curve, then L,(’f;X)--A,(;X) for
each set X at whose points the curve is continuous.

PROOF. Suppose X nonvoid and consider an arbitrary real number
al. By hypothesis it is possible to enclose each point t of X in
an open interval U(t) such that (P)(q)l(P)--(q)l whenever p
and q are a pair of points of U(t). Let us denote by D the join of
all the intervals U(t). Then A(J)aL(J) whenever J is a closed
interval in D. To see this, we need merely observe that if J is
fixed and is a sufficiently small positive number, then for each
closed interval K=[p, qJ contained in J and with length s there
exists in the set X a point t for which KU(t), so that r(p).r(q)
a[r(K) by definition of U(t). The proof of this is immediate by
reductio ad absurdum.

The result just obtained implies that A(I)aL(I) for each endless
interval ID; indeed A(I) is clearly the supremum of A(J) for all
closed intervals JI and similarly for L(I). If, therefore, we cover
X by any sequence z/ of endless intervals lying in D, we must have
A,(X)_A()<L(). This yields us A,(X)aL,(X), since L,(X) is
easily seen to be the infimum of L(/). Making a-->l, we obtain at
once A,(X)L,(X). The converse inequality being obvious, the
proof is complete.

3. Measure.bend of general curves. Our definition of measure-
bend, given in [23, was confined to the case where the curve
under consideration is light. As is immediately seen, however, the
same definition applies as well to any parametric curve (t) what-
soever. From now on the term measure-bend of on a set E will be
interpreted in this extended sense and we shall use for it the nota-
tion 9,(;E) as before. The object of this section is to prove a
useful theorem concerning measure-bend. It will be applied in our
forthcoming continuation of the present note.

We easily verify that 9,(; E), considered as function of E; is
always an outer measure of Carathodory. But it should be noted
that the relation 2,(; I)-/2(; I), which was proved in [2 3 for
endless intervals I when the curve (? is light, holds no more when

is a general curve. This may be ascertained by simple examples.
I.EMMA. Given a light curve , let be a direction curve of %
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i.e. let y(t) be a derived direction of at each point t of R (see
[1 44). Then A,(; E)tg,(; E)for any set E. Moreover, the sign

of equality holds in this inequality provided, in addition, that is
continuous and is a unilateral direction curve of (see [1 73).

PROOF. The first half of the assertion follows directly from
the definitions of A, and 9, in virtue of the proposition of [145.
To deduce the second half, suppose E nonvoid and cover E in any
manner by a sequence z/ of endless intervals. For each interval I
of / we then find, by the fundamental theorem of bend theory
(vide [1 95), that 2(; I)--A(y; I). Summing this over all /, we
obtain D,(; E)tg(; /)--A(’; ), whence we derive tg,(; E)A,(; E)
since / is arbitrary. The converse inequality being already estab-
lished, the proof is complete.

THEOREM. Given a light continuous curve (t) and a set E of
real numbers, suppose that tg,(; M)--0 for every countable set ME.
(i) Then 9,(; E)L(’; E) whenever is a unilateral direction curve

(on R)for the curve , and (ii) we have 9,(; E)2,(; E)for each
curve which coincides on E with .

REMARK. Since the measure-bend of a curve is always an outer
Carathodory measure, the condition tg,(; M)-0 of the theorem is
equivalent to the seemingly weaker hypothesis that /2,(; {t})--0 for
every point t of E.

PROOF. We may suppose E nonvoid in both parts of the assertion.
re (i): By the above lemma we have /, (7; X) /2, (; X) for

every set X and so ,(; It}) vanishes whenever tE. This implies
continuity of at all points of E, and consequently we find in view
of the lemma of 2 that tg,(; E)--/,(; E).-L,(; E). Statement
(i) is therefore reduced to the inequality L,(; E)L(y; E), which
may be proved as follows.

Each point t of E can be enclosed, on account of /,(; It})-0
mentioned above, in an open interval U(t) with rational extremities
and for which L(’; U(t))l. So that there exists in E an infinite
sequence of points t, t,.., such that E is already coverecl by the
sequence U(t), U(t),.... If, therefore, we write for brevity U.
U(t)... U(t) where n- 1, 2,..., then L,(; Un)n for each n

and further it follows from Theorem (4.6) on p. 46 of Saks [6 that
L,(y;EUn)-->L,(y;E) as n-->--c. It is thus enough to ascertain
L,(y; EU)L(; E) for each fixed n.

Now the set U., which is the join of a finite number of open
intervals, can be decomposed into a finite disjoint sequence /of open
intervals /, where we observe that L(y; I)-- L, (y; I)L, (y; Un),< n.
We then have L,(; EU)-L,(y; E), using again Theorem (4.6) just
quoted. Since evidently L(; E/)L(; E) on the other hand, it only
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remains to show that L,(r; E[)L(r; EI) for each I in l. By change
of parameter, however, this relation follows directly from the
theorem of [4 4.

re (ii): Let E0 be the set of all the right-hand points of con-
densation for E and write E--E--Eo. In other words, a point t
belongs to E0 iff every closed interval whose left-hand extremity
is t contains an uncountable infinity of points of E. Then E is
countable on account of a lemma to be proved in the next section,
and so every point of E0 is a right-hand point of condensation for
EEo. Moreover /2,(; E) vanishes by hypothesis, so that we must
have /2,(9; E) --/2,(;EE0). It follows that we may assume EoE
from now on.

This being so, let x be a fixed point of E. Then, since tg,(; {x})
vanishes, we find that /2(; K)I for every sufficiently short closed
interval K for which x is the left-hand extremity. By our assump-
tion EoE such an interval K contains an infinity of points x’x
of E and, on account of the lightness of , every x’ fulfils the
condition (x’):(x); for otherwise we should get at once the con-
tradiction /2(;K):> in virtue of the proposition of [160. It
follows that there is in the set E a strictly decreasing sequence of
points x, x.,.., tending to x and such that (Xn)(X) for each n
and moreover, as n-->+, the direction of the vector (Xn)--(X)
tends to a unit-vector ’0(x). We have thus constructed on E a right-
hand direction curve 0 for the curve . Since is light, we can
further extend the definition of ’0 to the whole real line in such a
manner that the resulting curve, which we shall denote by , is now
a right-hand direction curve on R for .

So far we have only been concerned whith the curve . Let us
turn now to the consideration of . By definition of measure-bend,
2,(; E) is the infimum of 9(; 0) where is an arbitrary sequence
of endless intervals which together cover E. On the other hand
the curve ro defined just now is evidently a right-hand direction
curve over E for and we therefore find by [1 45 that /2(; J)
L(r0; EJ)--L(y; EJ) for each interval J in . But, by statement
(i) established already, we have L(r; E)tg,(?; E), where the set E
may clearly be replaced by any of its subsets; so that in particular
L(; EJ);>/2,((; EJ) for each J. It follows that 9(; J):>9,(; EJ),
which leads on summation to /2(; 9):>9,(;E):>2,(; E). Taking
the infimum of /2(; ) for all choices of 0 we get finally tg,(; E)
:>tg,(; E), completing the proof.

4. A lemma from point set theory Given a set S of real
numbers, we shall say for the moment that an interval L which
may be of any type, is sparse (with respect to S), iff the intersec-
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tion SI is at most a countable set. Such an interval will further
be called maximal iff it is contained in no other sparse interval.
We shall enumerate in the following lines some simple properties of
sparse intervals. The proofs are immediate and left to the reader.
(i) An interval is sparse when, and only when, every closed interval
contained in it is sparse; (ii) the join of any intersecting pair of
sparse intervals is again a sparse interval; (iii) no pair of maximal
sparse intervals can intersect unless they coincide completely; (iv)
there exists at most a countable infinity of maximal sparse intervals;
(v) each sparse interval is contained in some maximal sparse interval.

We now conclude the present note with the following result
which is a direct consequence of the avove statements.

LEMMA. A subset T of S is countable whenever each point of T
can be enclosed in an interval sparse with respect to S.

ADDED PROOF. With the aid of the theorem of 3 we shall
derive in our forthcoming note the following result which resembles
the theorem of [44 and involves bend, measure-bend, and reduced
measure-bend:

Given a curve and a set E, suppose that tg,(; X)=0 for every
countable set XE. Then ’(; E)=/2,(; E) tg(; E).
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