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22. On a Fourier Invariant Distribution Space

By Hideo YAMAGATA
(Comm. by K. KUNUGI, M.J.A., March 12, 1962)

§1. According to the theory of distributions by L. Schwartz,
the Fourier transform of any tempered distribution (element of the
space (S)) is defined as another tempered distribution.[1] Now a
question arises from this fact. Let (D’) denote the space of distri-
bution defined by L. Schwartz. Let (Z’) denote the space which is
obtained from (D) by Fourier transform.[4] The question is the
following:

“Is the space (S’) the furthest Fourier invariant distribution
space in the space (D'), or not?” In another word, “Is there any
distribution space which is invariant with respect to Fourier trans-
form, is contained in the space (D) and contains the space (S’), or
not ?” [2]

In this paper we show an affirmative answer to this question in
the following manner:

In §2 we define the space (D')((Z’) which includes the space (S')
and does not equal to (S’). This space is invariant for Fourier trans-
form and is contained in the space (D’). In §3 we construet an
element of the space (D')(1(Z')N(S")°. In §4 we construct an element
of the space (D) (Z')N(S’)° which is an entire function.

§2. The notations and the definitions.

Let L, denote a linear complete topological space, and let z(L,)
denote its topology.

Let (D) and (S) denote the function spaces defined by L. Schwartz.
[1]

Let (Z), S,, S* and S¢ denote the function spaces defined by Gelfand
and Silov.[4] Namely the space (Z) is the Fourier transform of the
space (D), and the other spaces are defined as follows:

S, ={g; | #60(2) | <C, A%, pe(S))},

St={p; | a"¢C(x) | <C,Bq", pe(S)},
and St={g; | xtpC(x) | <CA*Bik**q, pc(S)}
where the constants A, B, C, C, and C, depend on ¢.

Let Sy denote the function space Sy=J,S; and let S, denote the
funection space S%=[J.S. About the exact definitions of S,, S¢, SE, S5,
and S!, see [4] and [6].

Let 7(A) < 7(B) denote that the topology of the space B is stronger
than the topology of the space A.

Let 7(A)=r7(B) denote that the topology of B is equivalent to
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the topology of A.

We can see easily that the following Lemma holds.

Lemma 1. If L, satisfies the following relations;

(1) (D)EL.C(S), (1) «((D))=L.)==((S)),

(2) @)SL.c(S), (2) «((Z))==(L)=<((S)),
then L, has the following properties;

(a) (DH2R2(S), (b)) (Z)2L2(S),

(¢) The Fourier transform {(L,) of the space L, satisfies the
condition (1), (1), (2), (2'), where the topology =(F(L.)) is given similar
as in [1], [4].

Moreover if L, also satisfies the following conditions;

(8) (D) is dense in the space L,,

(4) (Z) s dense in the space L,,
then F(L.) also satisfy the conditions (3), (4).

Definition 1. {(D)YN(Z")}z= U, where |J. L. is the join of all
spaces which satisfy the conditions (1), (1), (2), (2"), (8) and (4) in
Lemma 1.

Definition 2. Let {(DYN(Z')}r denote all the sequences of distri-
butions (e(S")) which are convergent in the topology (D') and in the
topology (Z'), too.

We understand Definition 1 or Definition 2 as the definition
of (DYN(Z).

The precise meaning of the space (D)N(Z)N(S) in §1 is
{DHNE@ZN} NS NHWD)N(Z )} r -

§3. According to the Theorem 2 in [6], there exists a function
¢, such that belongs to the space S, and does not belong to Sy. We
can assume this funection ¢, has carrier in [0,1] without loss of
generality. Using this function ¢, we construct the following func-
tion ¢, and distribution T,.

(1) The construction of the sequence.

Since ¢, does not belong to S7, the inequality |xf¢{(x)|<CA*Big*,
(k,9=0,1,2,- ) is not satisfied. Namely for all fixed A4, B, C, 8, there
exist integers k, ¢ such that Max, | 2*¢“@(x) | >CA*B%*?. Taking A>1,
it follows that Max, | ¢{?(x) | >CB%q*.

Now we select two sequences {B;} and {8} which satisfy the
following relations:

Bi<Pe<By< e, lg-gﬁz =
B, <B,<B;<-++, lim B;=co.

P
Corresponding these sequences we select sequence {q;} defined by
the equality ¢,=q,(8;, B;)=Min, {¢; Max, | ¢‘“(z) | > CBiq®*-}.
We construct the sequence {a,} (¢=1,2,---) by the following way:
a,=Min {1/Max | ¢*(z) |, 1/CB%.,9**+1} for ¢;<q¢<q;,,.
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We denote Ja, by e, (¢=0,1,2,---).

(2) Let T, be the distribution >}, «,r,,0% where z,, is the
translation of the length 2¢ to the positive sense.

(3) Let ¥,=>1,a,t,,9 Where the length s(q) of the trans-
lation is decided by the condition such that | ((z5,0?), (z,,90)) | takes
the maximum value.

(4) Let Ly, denote the space of the functions ¢¢(S) which satisfy
the condition |lim Th¢ |< 4o, where To=Tr_ 75,0,

(5) Let V(k,m,e, ¢, {T7}) denote the neighbourhood in L, which
satisfy the conditions; Vep means |lim T7¢|<e, and | (1472 D?p(x)| < e,

for any order of derivations |p|<m.

We easily see that L, is a complete linear topological space,
(8)2L,,=(D) and (S)2L.,2(2).

We are now ready to some Lemmas.

Lemma 2. (D) is dense in the space Ly, .

Proof. Let B,(x) denote the following functions; 0=<8,(x)<1,
u@)eC= and @)= (] for 1T

Let f be a function in the space L,. Then 8,(x)f<¢(D) and
lim B,(z)f=f in L. (Q.E.D.)

Lemma 3. (Z) is dense in the space Ly, .

Proof. Take a function ¢eS{=(Z) (a>1) which satisfy the

condition f o(x) de=® =0, then Y satisfies the following inequalities;

|2t (x) | KCBA*k* for ¢=0,1,2,---,k=0,1,2,. .- .
For any function fe<(D), we construct the sequence {f,(x)} by the
following form; f,,= f(x)xo(mx)/m® (m=1,2,3,---). Then there exist
a positive constant M, a positive integer K which has the property
Sf(x)=0 for |z|>K, and a sequence of positive number {e,{0} such
that the following inequality is satisfied,

| Tim (T3, fu= £ =1 Hm { Shes 7,00, f (@) (ma)md— £ |
< S . Min, MCB"A*kr*m" a,/P{m(n— K+1)}+¢, K.
The foregoing inequality takes the following form for k=2n;
[ lim (T2, fn—F> | < MCB"A*(2n)*"*m" 'a,/O{m(n— K + 1)}*" +¢,K. So
7-»00

we can see that the following equality lim | lim (T%,f,,—f> |=0. Using
this result and Lemma 2, we see easily that Lemma 3 holds.

Remark: In §4 we construct an example T, which is an entire
Sunction. We obtain Lemma 2, 3 also im such a case.

Lemma 4. T, belongs to the space (D') and (Z').

Proof. Since T, is a locally finite sum of ¢ (¢=0,1,2,---), T,
belongs to (D).
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Let B be a bounded set of (Z), then we can express B by the
following form; B={¥;|a*YC(x)| < C, B}, where B is a constant.
ko

So, |[¥C(x)| < C,B* for ¢=0,1,2,--- . For constant B, there exists
number B,,, such that the inequality 2B<+B,,,; holds.
For any ¢ which is larger than g,,
the inequality a,C,B?=<4+C,/2%/q% holds.
So a,C,B?<1/2? for sufficiently large q.
Hence [Ty, ¥ =1 (S0 ayesd®, ¥)| = S0 a,CBI< K< o0
Since in the space (Z’), a linear bounded functional is a linear
continuous functional similarly in the space (D’), T, belongs to the
space (Z'). [1]
From Lemma 4, we see that L, satisfies the condition (1") (2')
in Lemma 1.
Lemma 5. The function ¥, belongs to the space (S).
Proof. For any integer k, there exist B;,; and B,;,; such that
both the inequalities B;,,;>2* and B,,,>2k are satisfied.
For any fixed integer k and any ¢ such that satisfy ¢>Max (2, q,),
we can see the following inequality holds;
[a(2042)"| < (2Q+2)k/«/CBf+1qqﬁ”’(~ 1/‘/0)
On the other hand we see

11m | xFr§P () | = hm | 2 o ()

aa () Max, | pfP(x)]|,

a, for ng 2¢q<2 (q non negatlve integer)
=0 for x<O0.

o, (a) Max. | ¢§(o)] | <| 2-+2)"a, | M(P)

for 29<x<2q+2, where M(P)=Max,|¢o{(x)|.
Hence
lim | " P () | < !lim [(2942)***a, | M(P)/(2¢+2) <lim 1/J/C (2q+2)=0.
Z>o00 500 gq>o0
So ¥y(x) belongs to the space (S).
Lemma 6. (T, v¥,> does not converge.
Proof. (T, Vo) = ({3050 a,720C}, {2000 @, Tocpr@0}) = Do 72,00,
TapPoy . Since {ay,75,0%, 7,000 =1, {To, ¥,y does not converge.
Theorem 1. (S")S&(D)N(Z').
Proof. From Lemmas 4, 5,6, T,c{(D)YN(Z")}>N(S)".
From Lemmas 1, 2, 3,4, 5,6, T,c{(D)N(Z")};N(S')°. Hence Tye(D')
N&Z)HNs’.
§4. Hereafter we use the following entire function;
o.(x)=exp {—(kx)%}/K, where K= f mexp{—(kac)z} dx.

where a,(%) {

We can also see

Let {k;7=0,1,2,- ..} denote the integer sequence which has the
following properties;
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(1) Max [3P{po(w)*p, (@)} = (1—(1/(2+2)%) Max | 85¢(x) |,
(2) k>{E+3)1,
(8) [0P{eo(@)*pp (@)} <1/n*(i+2)* for |z|>n.
Let’s construct the series E(w) =3 7L00,72,(0* 04, (%)) = S50, 72, (0570 ().
Lemma 7. E(x) is an entire function.
Proof. 97°p, (v)=0" exp {— (k)Y K=3,{03~" exp {—(k,2)"}/K}
=0,{P,.1(x) exp {— (k,8)}} =(0,P,.(x) —2k:aP,_,(x)} exp {—(k,2)%),
where P,_,(x) is a polynomial whose order is ¢—1.
So, from the property (2) of k, we see
| 90, (2) | <21(k,)q! | o] exp {—(k,@)?) for |o]>2.
If (x+7y) is contained in an arbitrary compact set A, then
S0 20,00, (@4 i) | < SV | 7200 (@ 60)) |
+ >0k 12%(k,)™q! (29)7 | 1— ((w+19)/29) |* exp { — k[ (v—2q) +1y 1%}
<300l 72y (05204 (@ +5)) |+ S5 era(Fe,)*q ! 4% exp {—K5(29)°/2}
for sufficiently large K.
Using the Stirling’s formula, we see
Srr(k,)™ql g4 exp {—k3(29)*/2} < X052 xc41(2k,0)* exp {—K3(29)*/2}
for sufficiently large K, gq.
Since log [(2k,q)* exp {—2k,q)*/2}]1=2q log (2k,q) —((2k,q)%/2)
=2q[log (2k,q)—(k,(2k,q)/2)]< —¢* for sufficiently large q.
S x+1(2k,9)% exp {—(2k,9)*/2} < 35 k11 €XD (—°)
for sufficiently large K.
Hence we can see that
Srmo] @gTag (3P0 (@ +59)) [ < Shmo| 72, (857 01 (#+1)) |
+3 k41 €Xp (— ) < +oco.
Since a series of entire functions Ef=oaqrzq(5‘q>*pkq(x)) converges
uniformly in an arbitrary compact set, E(x) is an entire function.
Lemma 8. E(x) belongs to the space (D) (Z').
Proof. We easily see that E(x) belongs to (D), since E(x) is
an entire function.
We prove next that E(x) belongs to (Z’).
CE(), (@) = (ot (000,, @), ¥(2))
= (0 300, (1), 7o (@) = (00, (®) 47 o (@),
for Y(x)e(Z).
Using the property (1) of k, for yreB in Lemma 4, we see that the
following inequality |90, ()7 ()| =0 (¥)x7_o ¥ ”(2) | < C, B holds.
Hence by the same way as Lemma 4 in §3, we see that E(x)e(Z").
Lemma 9. FE(x) does not belong to (S').
Proof. Consider the inner product {(E(x),y,> for the function
Y, in §3, then we see that the following equality
(), W0 = (S50 T2d P Py S0 T a0
= om0ty < Tzqa(q)*:okq, TsepPo)
+Zq‘.§,aqaq,<z-2q5‘q’*,okq, Toqy¥oy holds,
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From the property (3) of k;, we see that |a,a, | are uniformly bounded
for any ¢ ¢/, and |q§<12q5(q)*pkq, Ton®oy | <1/(g+2)* >0, 1/4%

Hence l gngaqaqKTan(Q)*pkq, Ts(q)§00> l <C< + oo,
For q9=4q; la§<r2q5(®*pqu Ts(q)900> |
=| Max |¢§(x) | (1—(1/(g+2)%))/Max | pi”(2) | |=(1—(1/(¢+2)*)).

So the series 2;°=0a§<rzqa<q>*pkq, TPy does not converge.

Hence {FE(x),,> does not converge i.e. E(x) does not belong to
(S).

Theorem 2. The space (D) (Z')(S)° contains an entire
Junction.

Proof. From Lemmas 7, 8,9, E(x)e{D)(Z")},N(S").
By the same method as in Lemmas 2, 3, and by the result of Lemmas
7,8,9, E@e{(D)N(Z)}:N(S).

Hence E(x)e(D)YN(Z')N(S')".

Lemma 10. |Fp,(2)|<1.

Proof. I&ok(x)|=‘ j exp (i8)0,(x) dw]:\ [ exp(ios k) K da

< f | exp (ins— k%) K | do= f exp (—ka?)/K do=1.

Lemma 11. |- 75(00, (%)) | <[s]".

Proof. |B-es, (550, (1) =] B+ (cad V201, ()| <| &+ 00| B4, ()]

<|(is)t- e |=|s]".

Theorem 3. The space (D)YN(Z')N(S')" contains an entire
Sunction E(x) whose Fourier transform FE(x) is also an entire
Sfunction.

Proof. Let’s consider the function E(x)=377,e,7,,(3" p; (2)).
From Theorem 2, E(x) is an entire function. Since 1/a,>q! for
sufficiently large ¢, it follows from Lemmas 10, 11 that FE(z) is also
an entire function.

E(x) and FE(x) belong to (D)YN(Z)N(S)" .

Hence the consequence of Theorem 3 is obtained.
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