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1o Introduction. In this note we shall consider second order
quasi-linear elliptic equations of the form

(A) , a(x, u, grad u)3u f(x, u, grad u)
,.= XXj

whose solutions u(x) are assumed to exist and to be of class C in
some domain G.

The purpose of this paper is to establish a maximum principle
for solutions of the equations (A) under comparatively mild assump-
tions so as to extend the classical maximum principles.) Once the
maximum principle has been established, our next task is to exhibit
some of its applications. Thus, for instance, the uniqueness of the
solution of the Dirichlet problem for some quasi-linear elliptic equa-
tions will be proved.

We can show, in view of the similarity lying between elliptic
and parabolic equations, the validity of an analogous maximum
principle fo quasi-linear parabolic equations of the second order.
However, its description will be left to another opportunity.
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valuable suggestions.

2. Maximum principle. We shall begin with the simplest and
the most evident fact concerning the maximum principle for the
equation (A).

Proposition. Let the following conditions be satisfied:
i) The quadratic form aj(x, u, 0) is positive definite for

,j=l

every x and u under consideration.
ii) The function f(x, u, O) is positive for positive u.
Then any solution u(x)eC2(G) of the equation (A) cannot assume

its positive maximum in the interior of G.

1) x=(x,. ., Xn) and gradu=(3u/3x,---, 3u/3xn).
2) The functions aij(x, u, p) and f(x, u, p) are defined in some domain in the space

(X, U, P)--(ZI,"" ", Xn, U, Pl," ", Pn).
3) See, e.g., Miranda [3J, pp. 3-5.
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If, in the above proposition, the condition ii) is replaced by the
following

ii’) The function f(x, u, 0) is positive for every u.
then the solution u(x) cannot attain its maximum in the interior of G.

Now we state our main result.
Theorem. We assume that the following conditions are satisfied:
I) There exists a ositive lower semi-continuous function

h(x, u, p) such that

u, u, II II
,j=

for every x, u, p under consideration and for every real vector .
II) The function f(x, u, O) is non-negative for non-negative u.

III) f(x, u, p)-- f(x, u’, p’)--L([ u--u’ I+[[ P--P’ [[) with positive
L--L(12, M, N) depending only on 9, M, and N if x varies in any
compact subset [2 of G and u [, u’ IM and II P II, II P’ IIN, M and
N being any constants.)

We assume further that a solution u(x)eC(G) of the equation (A)
attains its non-negative maximum at some interior point x of G.
Then u(x) is reduced to a constant in the component Go of the set
{xG; u(x)u(x)-m} containing x.

Proof. We denote by G the set {xeG0; u(x)-m} and assume that
G.Go. Our aim is to derive a contradiction irom this assumption.

Let S(Go-G) be a sphere of radius R and with center at the
origin whose boundary has only one point x in common with G and
S a sphere of radius less than R and with center at x. We define
a function v(x) by

v0(x) =exp (--k II x I])--exp (--/oR2)
where s and k are positive constants. For sufficiently small s we
have v(x)<u(x)=u(x)-m on the boundary 3S of S and hence
max v(x)(m) is achieved at an interior point x of S. The follow-

ing relations are obvious:
1 ]:1 grad u(x)[[- 2k[[ x]l exp (-k]] x ]]),
2 u(xl)-u(x2) ISVo(X2)s exp (-/c II x 112)

If we denote by A? a linear elliptic partial differential operator
defined by

=,= a(x, u(x), grad u(x))
3xax

we have for sufficiently large k
3  v(x > 0.

4) II" If denotes the usual norm of an n-dimensional real vector.
5) We shall often encounter such constants L in the sequel. Their meaning being

obvious from the context at any time, no detailed explanation will be given as to them.
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In fact, with the aid of the assumptions of the theorem and the
relations (1), (2) we see that

v(x) u()+Vo(X)
f(x, u(x), grad u(x))- f(x, u(x), O)+ f(x, u(x), O) +SVo(X)
L( u(x) u(x) + grad u(x) )+Vo(X)

s exp (--k I x ]])[dkh(x, u(x), grad u()) ] x ]]--2ki

--2k a,(x, u(x), grad u(x)) L.
Since the coefficient of k in the bracket of the last expression is
positive, we are able to choose k so large as to make v(x) positive.

On the other hand, from the fact that the matrix ]]a(x, u,
is positive definite and that the function v(x) is maximal at x it
follows that

v(x) a(x, u(x) grad u(x)) v(x) 0
,=

which contradicts (3). This desired contradiction proves our theorem.
The following three corollaries are immediate consequences of

the main theorem. They need no proofs.
Corollar 1. Under the same assumptions as in Theorem except

that the condition II) is replaced by the following
II’) The function f(x, u, O) is non-negative for every u.

we can conclude that if any solution u(x)C(G) of (A) achieves its
maximum at some interior point x then u(x) is reduced to a constant
in Go.

Corollar 2. Let the following assumptions be fulfilled:
I) There exists a positive lower semi-continuous function

h(x, u, p) such that

a(x, u,)h(x, u, ) .
,=1

II*) The function f(x, u, O) is non-negative for non-negative u
and is non-positive for non-positive u.

IH*) If(x, u, )-f(x, u’, p’)] L(] u-u’ +[I -’
Let u(x) e C(G) C(G) be a solution of the equation (A) in a

bounded domain G with smooth boundary 3G. Then we obtain
(4) u(x) ]max u(x) , xG.

In case that u(x) is not constant we have more precisely
(5) u(x) [<max u(x) [, xG.

G

Corollar . Under the same assumptions as in Corollary 2
except that II*) is replaced by the condition

II) The function f(x, u, O) vanishes identically.

we see that for any solution u(x)eC(G)C(G) of (A)
6) See the footnote 5).
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(6) min u(x)u(x)max u(x), xeG.
C

If, furthermore, u(x) is not constant the following inequalities hold:
7 min u(x) < u(x) <max u(x), x e G.

G G

:. Applications. As an important application of the theorems
stated in the preceding section we can prove the uniqueness of the
solution of the Dirichlet problem for quasi-linear elliptic partial
differential equations of the form

(B) , aj(x, gradu)3u f(x, u, grad u)
,= XXj

whose coefficients and free term are subjected to the following re-
strictions:

a) There exists a positive lower semi-continuous function h(x, p)
such that

a(x, p)$h(x, p)]] $
t,=1

for every x and p under consideration and for every real vector $.

b) a(x, p)--a(x, p’) i p--p’ ]l (i,j=l, 2,...,n)
with positive L.

c) The function f(x, u, p) is non-decreasing with respect to u.
d) [f(x,u,p)--f(x,u’,p’)]L(u--u’]+p--p’[)

with positive L.
By the Dirichlet problem D(G; ) for the equation (B) we mean

the problem to seek a solution of (B) of class C(G) satisfying the
boundary condition: u(x)= on 3G, G being a bounded domain with
smooth boundary. We assert that under these conditions the Diri-
chlet problem D(G; ) has at most one solution.

Indeed, let Uo(X) be a fixed solution of the problem D(G; ) and
u(x) another solution. If we set v(x)=u(x).-Uo(X), then v(x) satisfies
the quasi-linear elliptic equation

(B’) A(x, grad v). 3v---F(x, v, grad v)

where

and
Aj(x, grad v)=a(x, grad v+grad u0)

F(x, v, grad v)-- f(x, V+Uo, grad v+grad Uo)- f(x, Uo, grad u0)
3u0

--,j=l’ (aj(x, grad v+grad Uo)--a(x, grad u0))
3x,3x

In view of the restrictions imposed on the equation (B) we can
easily verify that Corollary 2 is applicable to the equation (B’) and
we can therefore conclude that v(x) vanishing on G vanishes iden-
tically in G. Thus our assertion is demonstrated.

We shall next refer to the second application. Let us consider
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the equation (B) under the same assumptions as n the above uni-

queness theorem. Suppose that the solutions u(x) and v(x)eC(G) of
(B) satisfy the nequality: u(c)--v()l on the boundary 3G. Then
the same inequality is valid in the whole of G. The proof of this
fact is entirely similar to that of the uniqueness theorem. Let
further a sequence {u(x)}% of solutions of (B) of class C(G) be given.
If the sequence converges uniformly on 3G then it converges uniformly
to a continuous function in the whole domain G. This is nothing
but an extension of the Harnack’s first theorem, though it is as yet
impossible to examine whether the lmit function s a solution of
the original equation.
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