54. A Remark on Convexity Theorems for Fourier Series

By Kenji Yano
Department of Mathematics, Nara Women's University, Nara

(Comm. by Z. Suetuna, m.J.A., June 12, 1962)
In the previous paper [1], we have proved a number of convexity theorems concerning Fourier series. In the present paper, we shall improve some of them replacing either of the conditions by onesided one.

Let $\varphi(t)$ be an even function integrable in $(0, \pi)$ in Lebesgue sense, periodic of period 2π, and let

$$
\varphi(t) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n t,
$$

and

$$
\Phi_{0}(t)=\varphi(t), \Phi_{\alpha}(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-u)^{\alpha-1} \varphi(u) d u \quad(\alpha>0) .
$$

The (C, β) sum of the Fourier series of $\varphi(t)$ at $t=0$ is

$$
s_{n}^{\beta}=A_{n}^{\beta} \frac{1}{2} a_{0}+\sum_{\nu=1}^{n} A_{n-\nu}^{\beta} a_{\nu}=\sum_{\nu=0}^{n} A_{n-\nu}^{\beta-1} s_{\nu}(-\infty<\beta<\infty),
$$

where $s_{n}=s_{n}^{0}, A_{0}^{\beta}=1$ and

$$
A_{n}^{\beta}=\frac{(\beta+1)(\beta+2) \cdots(\beta+n)}{n!} \quad(n \geqq 1) .
$$

In what follows we understand that $t \rightarrow 0$ means $t>0$ and $t \rightarrow 0$.
Now, Theorems 2, 4, 5, and 6 in the paper [1] can be improved as follows.

Theorem 2'. Let $0 \leqq b, 0<\beta-b \leqq \gamma-c$ and $|c-b|<1$. If as $t \rightarrow 0$,

$$
\begin{equation*}
\int_{0}^{t}\left|\Phi_{\beta}(u)\right| d u=o\left(t^{\gamma+1}\right) \tag{1}
\end{equation*}
$$

and

$$
\int_{0}^{t}\left(\left|\Phi_{b}(u)\right|-\Phi_{b}(u)\right) d u=O\left(t^{c+1}\right)
$$

then we have

$$
s_{n}^{r}=o\left(n^{q}\right), q=b+(r-c) \frac{\beta-b}{\gamma-c},
$$

as $n \rightarrow \infty$, for $c<r<\gamma^{\prime}$, where

$$
\gamma^{\prime}=\inf \left(\gamma, \frac{(b+1) \gamma-(\beta+1) c}{\gamma-c+b-\beta}\right) .
$$

Corollary 2.1'. Let $0<\beta<\gamma$ and $0<\delta<1$. If (1) holds, and $\varphi(t)$ $=O_{L}\left(t^{-\delta}\right)$, then

$$
s_{n}^{\alpha}=o\left(n^{\alpha}\right), \alpha=\beta \delta /(\gamma-\beta+\delta) .
$$

THEOREM 4^{\prime}. Let $-1 \leqq \beta, 0 \leqq c$ and $0<\gamma+1-c \leqq \beta+1-b$,
$[b \gamma<(\beta+1)(c-1)]$. If as $n \rightarrow \infty$,

$$
\begin{equation*}
\sum_{\nu=0}^{n}\left|s_{\nu}^{\beta}\right|=o\left(n^{\gamma+1}\right) \tag{2}
\end{equation*}
$$

and

$$
\sum_{\nu=n}^{2 n}\left(\left|s_{v}^{b-1}\right|-s_{\nu}^{b-1}\right)=O\left(n^{c}\right),
$$

then we have

$$
\Phi_{r}(t)=o\left(t^{q}\right), q=b+(r-c) \frac{\beta+1-b}{\gamma+1-c},
$$

as $t \rightarrow 0$, for $c<r<\gamma+1$.
Corollary 4. 1'. Let $0<\delta<1$ and $-(1-\delta)<\gamma<\beta$. If (2) holds, and $a_{n}=O_{L}\left(n^{-(1-\delta)}\right)$, then

$$
\Phi_{\alpha}(t)=o\left(t^{\alpha}\right), \alpha=\delta(\beta+1) /(\beta-\gamma+\delta) .
$$

THEOREM 5^{\prime}. Let $0 \leqq b$ and $0<\beta-b \leqq \gamma-c,[(b-1) \gamma<c(\beta-1)]$. If

$$
\begin{equation*}
\Phi_{\beta}(t)=o\left(t^{r}\right) \text { as } t \rightarrow 0, \tag{3}
\end{equation*}
$$

and

$$
\sum_{\nu=n}^{2 n}\left(\left|s_{\nu}^{c-1}\right|-s_{\nu}^{c-1}\right)=O\left(n^{b}\right) \text { as } n \rightarrow \infty,
$$

then we have

$$
\Phi_{r}(t)=o\left(t^{q}\right), q=c+(r-b) \frac{\gamma-c}{\beta-b},
$$

as $\mathrm{t} \rightarrow 0$, for $b<r<\beta$.
Corollary 5'. Let $0<\delta<1$ and $\delta<\beta<\gamma$. If (3) holds, and a_{n} $=O_{L}\left(n^{-(1-\delta)}\right)$, then

$$
\Phi_{\alpha}(t)=o\left(t^{\alpha}\right), \alpha=\gamma \delta /(\gamma-\beta+\delta) .
$$

Theorem 6^{\prime}. Let $0 \leqq c, 0<\gamma-c \leqq \beta-b$ and $|b-c|<1,[c(\beta+1)$ $<(b+1) r]$. If

$$
\begin{equation*}
s_{n}^{\beta}=o\left(n^{r}\right) \text { as } n \rightarrow \infty, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t}\left(\left|\Phi_{c}(u)\right|-\Phi_{c}(u)\right) d u=O\left(t^{b+1}\right) \text { as } t \rightarrow 0 \tag{5}
\end{equation*}
$$

then we have

$$
s_{n}^{r}=o\left(n^{q}\right), q=c+(r-b) \frac{\gamma-c}{\beta-b},
$$

as $n \rightarrow \infty$, for $b<r<\beta$.
Corollary 6^{\prime}. Let $0<\gamma<\beta$ and $0<\delta<1$. If (4) holds, and $\varphi(t)$ $=O_{L}\left(t^{-\delta}\right)$, then

$$
s_{n}^{\alpha}=o\left(n^{\alpha}\right), \alpha=\gamma \delta /(\beta-\gamma+\delta) .
$$

Proof of Theorem 6'. Using the number γ^{\prime} such as $\gamma^{\prime}-c=\beta-b$ the assumptions imply

$$
\gamma^{\prime}>0 \text { and } s_{n}^{\beta}=o\left(n^{r^{\prime}}\right)
$$

So, by a theorem of Izumi [2], i.e. Corollary 4.2 in [1], we have $\Phi_{r^{\prime}+1+\varepsilon}(t)=o\left(t^{\beta+1+\varepsilon}\right), \varepsilon>0$. Consequently
(6)

$$
\Phi_{c+k}(t)=o\left(t^{b+k}\right)
$$

holds for every $k>\beta-b+1$. On the other hand, the condition (5) implies for $0<t \leqq t_{0}$

$$
\int_{t}^{2 t}\left(\left|\Phi_{c}(u)\right|-\Phi_{c}(u)\right) d u \leqq A t^{b+1}
$$

A being an absolute constant, and then
(7)

$$
\Phi_{c+1}(t+u)-\Phi_{c+1}(t) \geqq-A t^{b+1}, 0<u \leqq t .
$$

From (6) and (7) we have $\Phi_{c+1}(t)=O\left(t^{b+1}\right)$ by Theorem 8 in [1], and so (5) yields

$$
\begin{equation*}
\int_{0}^{t}\left|\Phi_{c}(u)\right| d u=O\left(t^{b+1}\right) \tag{8}
\end{equation*}
$$

The result follows from (4) and (8). Cf. Theorem 6 and Lemmas 3 and 3^{\prime} in [1].

The proofs of Theorems $2^{\prime}, 4^{\prime}$, and 5^{\prime} are similar.

References

[1] K. Yano: Convexity theorems for Fourier series, J. Math. Soc. Japan, 14, 119149 (1962), in the press.
[2] S. Izumi: Notes on Fourier analysis (XXVII): A theorem on Cesàro summation, Tôhoku Math. J. (2), 3, 212-215 (1951).

