By Teiichi KOBAYASHI

Department of Mathematics, Tokyo University of Education (Comm. by K. KUNUGI, M.J.A., July 12, 1962)

1. Introduction. Let X and Y be spaces with base points x_0 and y_0 respectively. We denote by X^Y the mapping space of maps $(Y, y_0) \rightarrow (X, x_0)$ with the compact-open topology; the base point is a constant map $Y \rightarrow x_0$. Any map $g: (X, x_0) \rightarrow (Z, z_0)$ of a space $X \ni x_0$ into another space $Z \ni z_0$ induces a map $g: X^Y \rightarrow Z^Y$ of X^Y into Z^Y defined by [g(f)](y) = (gf)(y) for $f \in X^Y$ and $y \in Y$. Then we have

Theorem 1. Let spaces $E \supset F$, $B \supset C$ and a map $p: (E, F) \rightarrow (B, C)$ be given. If p is a weak homotopy equivalence of pairs, i.e. if p induces an isomorphism

 $p_*: \pi_n(E, F) \approx \pi_n(B, C)$ for any $n \ge 0$,

then for any CW-complex K the induced map 'p: $(E^{\kappa}, F^{\kappa}) \rightarrow (B^{\kappa}, C^{\kappa})$ is a weak homotopy equivalence of pairs, i.e. 'p induces an isomorphism

 $p_*: \pi_n(E^K, F^K) \approx \pi_n(B^K, C^K) \text{ for any } n \geq 0,$

where we mean a 1-1 correspondence by an isomorphism if $n \leq 1$.

This will be proved in section 3 by using Sugawara's homotopically covering homotopy theorem ([5], Theorem 3) and Morita's theorem concerning an exponential law for mapping spaces ([4], Theorem 6).

In the next paper we intend to apply this theorem to establish a generalization of Dold-Thom's isomorphism theorem ([1], Satz 6. 10) for the homotopy groups with coefficients in the sense of Katuta [2] (cf. [3]).

2. Preliminaries. Throughout this paper we mean by a space a topological space with base point, by a map a continuous map which carries the base point to the base point and by a homotopy a homotopy relative to the base point.

Let X and Y be Hausdorff spaces and let Z be any space. With any map $f: X \times Y \rightarrow Z$ there is associated a map $f': Y \rightarrow Z^X$ by the formula [f'(y)](x) = f(x, y) for $y \in Y$ and $x \in X$. The correspondence $f \rightarrow f'$ defines a 1-1 map

$$\theta: Z^{X \times Y} \to (Z^X)^Y$$

K. Morita [4] has introduced the following notion. It is said that a Hausdorff space W has a weak topology with respect to compact sets in the wider sense if a subset A of W such that $A \frown K$ is closed for every compact set K of W is necessarily closed. For instance, if X is a CW-complex and Y is a locally compact Hausdorff space, then $X \times Y$ has the above property. K. Morita proved the following result in $\lceil 4 \rceil$.

(2.1) If $X \times Y$ is a Hausdorff space having the weak topology with respect to compact sets in the wider sense, then the map

$$\theta: Z^{X \times Y} \to (Z^X)^{Y}$$

is a homeomorphism onto. If, in addition, $A \subset X, B \subset Y, C \subset Z$, then θ induces a homeomorphism onto:

 $\theta_1: (Z, C)^{(X \times Y, A \times Y \smile X \times B)} \rightarrow ((Z, C)^{(X, A)}, C^X)^{(Y, B)}.$

Let X and Y be spaces with base points x_0 and y_0 respectively. We denote by X # Y the space obtained from $X \times Y$ by contracting the subspace $X \lor Y = X \times y_0 \lor x_0 \times Y$ to a point; the base point in X # Y is the image of $X \lor Y$. Then we easily obtain from (2.1)

(2.2) Under the assumption of (2.1) the induced map θ_2 :

$$Z^{X \# Y} \rightarrow (Z^X)^Y$$

is a homeomorphism onto. If, in addition, $A \subset X, B \subset Y, C \subset Z$, then θ_{2} induces a homeomorphism onto:

 $\theta_3: (Z, C)^{(X \# Y, A \# Y \cup X \# B)} \rightarrow ((Z, C)^{(X, A)}, C^X)^{(Y, B)}.$

Clearly, we have the naturality of the map θ ; that is,

(2.3) The commutativities hold in the following diagrams:

$$Z^{X \times Y} \xrightarrow{\theta} (Z^X)^Y \qquad Z^{X \times Y} \xrightarrow{\theta} (Z^X)^Y \qquad Z^{X \times Y} \xrightarrow{\theta} (Z^X)^Y \qquad Z^{X \times Y} \xrightarrow{\theta} (Z^X)^Y$$

$$\varphi^{\#} \Big|_{Z^{X' \times Y}} \xrightarrow{\varphi^{\#}} (Z^{X'})^Y \qquad Z^{X \times Y'} \xrightarrow{\theta} (Z^X)^{Y'} \qquad \gamma_{\#} \Big|_{Z^{X \times Y}} \xrightarrow{\theta} (Z^{Y})^Y$$

where $\varphi^{\sharp}, \psi^{\sharp}$ and η_{\sharp} are maps induced by $\varphi: X \rightarrow X', \psi: Y \rightarrow Y'$ and $\eta: Z \rightarrow Z'$ respectively in obvious ways.

Analogous properties to (2.3) are valid for induced maps θ_1, θ_2 and θ_3 . Hereafter, for simplicity, we write θ instead of θ_i (i=1, 2, 3).

Let $E \supset F$ and $B \supset C$ be spaces and $p: (E, F) \rightarrow (B, C)$ be a map of pairs. Consider the following conditions (I) and (II), concerning such a map p (cf. $\lceil 5 \rceil$).

(I) Let K be any CW-complex, L a subcomplex of K, I = [0, 1](the closed unit interval), and M a subcomplex of the product complex $K \times I$. Let $N = ((K \times 0) \cup (L \times I)) \cap M$. Let two maps ξ and η be given such that in the diagram

$$((K \times 0)^{\smile} (L \times I), N) \xrightarrow{\xi} (E, F)$$
$$i \Big| \qquad p \Big| \\(K \times I, M) \xrightarrow{\eta} (B, C)$$

the two composite maps $p\xi$ and ηi are homotopic to each other by a homotopy of pairs

$$G: (((K \times 0) \smile (L \times I)) \times I, N \times I) \rightarrow (B, C)$$

324

with $G(z, 0) = p\xi(z)$, $G(z, 1) = \eta i(z)$ for $z \in (K \times 0) \cup (L \times I)$, where i is the inclusion map.

From these assumptions, it follows that there exist a map $\lambda: (K \times I, M) \rightarrow (E, F)$

and a homotopy

 $H: (K \times I \times I, M \times I) \rightarrow (B, C)$

such that $\lambda i = \xi$, $H(z, 0) = p\lambda(z)$, $H(z, 1) = \eta(z)$ for $z \in K \times I$ and H(z, t) = G(z, t) for $z \in (K \times 0) \smile (L \times I)$, $t \in I$.

(II) In addition to the assumptions of (I), assume further that $K=I^n(=I\times\cdots\times I \ (n-times))$,¹⁾ with a cell structure such that it has only one n-cell $I^n-\dot{I}^n$, $L=\dot{I}^n$ and $p\xi=\eta i$. Then we have the conclusions of (I), i.e. there exist a map

$$\lambda: (I^n \times I, M) \rightarrow (E, F)$$

and a homotopy

$$H: (I^n \times I \times I, M \times I) \rightarrow (B, C)$$

such that $\lambda i = \xi$, $H(z, 0) = p\lambda(z)$, $H(z, 1) = \eta(z)$ for $z \in I^n \times I$ and $H(z, t) = p\lambda(z) = \eta(z)$ for $z \in (I^n \times 0)^{\smile} (\dot{I}^n \times I)$, $t \in I$.

M. Sugawara proved the following theorem ([5], Theorem 3).²⁾

(2.4) Let $E \supset F$ and $B \supset C$ be spaces and $p: (E, F) \rightarrow (B, C)$ be a map of pairs. Then the following statements are equivalent:

- (1) p is a weak homotopy equivalence of pairs.
- (2) p satisfies the condition (I).
- (3) p satisfies the condition (II).

3. Proof of Theorem 1. Assume that the induced map 'p satisfies the assumption of the condition (II); that is, let two maps ξ' and η' of pairs be given such that the following diagram

$$(J^{n}, J^{n} \cap \mathbf{M}) \xrightarrow{\xi'} (E^{K}, F^{K})$$
$$\stackrel{i \downarrow}{i \downarrow} \stackrel{'p \downarrow}{\gamma'} (I^{n+1}, M) \xrightarrow{\eta'} (B^{K}, C^{K})$$

is commutative (i.e. $p\xi' = \eta' i$), where M is a subcomplex of $I^{n+1} = I^n \times I$, $J^n = (I^n \times 0)^{\smile} (I^n \times I)$ and i is the inclusion map. With the map η' we can associate a map

$$\eta: (K \times I^{n+1}, K \times M) \rightarrow (B, C)$$

defined by $\eta(k, x) = [\eta'(x)](k)$ for $k \in K, x \in I^{n+1}$. Since K is a CWcomplex and I^{n+1} is a locally compact space, the correspondence $\eta' \to \eta$ is a homeomorphism between appropriate mapping spaces by (2.1). Similarly, with the map ξ' we associate a map

$$\xi: (K \times J^n, K \times (J^n \frown M)) \rightarrow (E, F').$$

¹⁾ When n=0 we take I° for two points $\{0, 1\}$ and I° for the empty set.

²⁾ M. Sugawara did not consider the case n=0. But (2.4) is easily verified in that case.

T. KOBAYASHI

Then the following diagram is obviously commutative:

Now $K \times I^{n+1} = (K \times I^n) \times I$, $K \times J^n = ((K \times I^n) \times 0) \smile ((K \times \dot{I^n}) \times I)$, $K \times (J^n \frown M) = (K \times J^n) \frown (K \times M)$ and $K \times I^n$ is a CW-complex, and hence the assumptions of (I) are satisfied. Since p is a weak homotopy equivalence, the conclusions of (I) hold by (2.4). Therefore there exist a map

$$\lambda: (K \times I^{n+1}, K \times M) \rightarrow (E, F)$$

and a homotopy

$$H: (K \times I^{n+1} \times I, K \times M \times I) \rightarrow (B, C)$$

such that $\lambda(1 \times i) = \xi$, $H(z, 0) = p\lambda(z)$, $H(z, 1) = \eta(z)$ for $z \in K \times I^{n+1}$, and $H(z, t) = p\lambda(z)$ for $z \in K \times J^n$, $t \in I$. For λ and H we define a map $\lambda' : (I^{n+1}, M) \rightarrow (E^K, F^K)$

and a homotopy

 $H': (I^{n+1} \times I, M \times I) \rightarrow (B^{\kappa}, C^{\kappa})$

by $[\lambda'(x)](k) = \lambda(k, x)$ for $x \in I^{n+1}$, $k \in K$ and H'(x, t)(k) = H(k, x, t) for $x \in I^{n+1}$, $t \in I$, $k \in K$ respectively. Then by (2.1) both maps $\lambda \to \lambda'$ and $H \to H'$ are homeomorphisms between appropriate mapping spaces. It is clear that λ' and H' satisfy the desired properties. Thus the map 'p satisfies the condition (II) and by (2.4) 'p is a weak homotopy equivalence.

Added in Proof. After the submission of the manuscript I have found a theorem of Spanier (Ann. of Math., 69, 197 (1959)) which is closely related to our Theorem 1.

References

- A. Dold und R. Thom: Quasifaserungen und unendliche symmetrische Producte, Ann. of Math., 67, 239-281 (1958).
- [2] Y. Katuta: Homotopy groups with coefficients, Sci. Rep. of the Tokyo Kyoiku Daigaku, 7, 5-24 (1960).
- [3] T. Kobayashi: A generalization of Dold-Thom's isomorphism theorem for the homotopy groups with coefficients, ibid., 7, 101-113 (1962).
- [4] K. Morita: Note on mapping spaces, Proc. Japan Acad., 32, 671-675 (1956).
- [5] M. Sugawara: On a condition that a space is an H-space, Math. J. of Okayama Univ., 6, 109-129 (1956).