67. On a Ya. B. Rutickii's Theorem Concerning a Property of the Orlicz Norm

By Kôji Honda

Muroran Institute of Technology

(Comm. by K. KUNUGI, M.J.A., July 12, 1962)

Let **R** be a modulared semi-ordered linear space¹⁾ and its modular be $m(x)(x \in \mathbf{R})$, and suppose the semi-regularity²⁾ of **R**.

Concerning the property of the Orlicz norm:

(1)
$$\lim_{\|u\|_{M}\to\infty}\frac{1}{\|u\|_{M}}\int_{G}M[|u(t)|]dt = \infty,$$

where G is a bounded closed set in finite-dimentional Euclidian space and M is a N-function (see [2]), Ya. B. Rutickii [4] gave the following theorem.

Theorem 1. In order that (1) be fulfilled, it is necessary and sufficient that there exists a function f(u) $(0 \le u < \infty)$, satisfying the condition

$$\lim_{u \to \infty} f(u) = \infty$$

and such that for every v and all sufficiently large values of u the inequality

$$(3) M(uv) \ge uf(u)M(v)$$

be fulfilled.

The Orlicz space L_{M}^{*} is a modulared space on which the modular is defined as

$$(4) mtext{ } m(x) = \int_{G} M[|x(t)|] dt (x \in L_{M}^{*}).$$

Then, (1) is written as

$$(5) \qquad \qquad \lim_{\|x\|\to\infty} m(x)/||x|| = \infty$$

where
$$||x|| = \inf_{\xi > 0} \frac{1 + m(\xi x)}{\xi} (= ||x||_{M})^{3}$$

The purpose of this paper is to prove the following theorem.

Theorem 2. Let \mathbf{R}^m be a modulared semi-ordered linear space. Then, in order that (5) be fulfilled, it is necessary and sufficient

¹⁾ Namely, \mathbf{R} is a conditionally vector lattice, in the sense of G. Birkhoff, on which a functional m(x) is defined, and then such space is denoted by \mathbf{R}^m . (see [3, §35]).

²⁾ \mathbf{R} is said to be *semi-regular*, if for any $o \neq x \in \mathbf{R}$ there exists an element $\overline{x} \in \overline{\mathbf{R}}$ such that $\overline{x}(x) \neq 0$, where $\overline{\mathbf{R}}$ is the totality of all linear functionals \overline{x} satisfying that $x_{\lambda \downarrow \lambda \in A}$ 0 implies $\inf_{\lambda \in A} |\overline{x}(x_{\lambda})| = 0$.

³⁾ See Theorem 10.5 in [2].

that the conjugate modular⁴⁾ \overline{m} of m is uniformly finite.⁵⁾

Before proceeding to the proof, we will observe a relation between Theorems 1 and 2.

The conjugate modular \overline{m} of the modular m which is defined by (4) is given as

$$\overline{m}(\overline{x}) = \int_{G} N[|\overline{x}(t)|] dt \qquad (\overline{x} \in L_{N}^{*}),$$

where N is the complementary function of M in the sense of Young.

This modular \overline{m} is uniformly finite, if and only if N satisfies the (\mathcal{A}_2) -condition, i.e., there exist constant numbers K and $v_0 > 0$ such that

(6) $N(2v) \leq KN(v)$ $(v_0 \leq v)$. Therefore, by Theorem 2, we can set (6) instead of (2) and (3), in Rutickii's theorem.

To prove Theorem 2, we restate the following results concerning the modular.

Lemma 1. If a modular m(x) $(x \in \mathbb{R}^m)$ is uniformly increasing,⁶ then the conjugate modular \overline{m} of m is uniformly finite. Conversely, if \overline{m} is uniformly finite, then m is uniformly increasing.

The first statement of Lemma is Theorem 48.4 in [3], and the next is reduced from the reflexivity⁷⁾ of m and the uniform increaseness of the conjugate modular $\overline{\overline{m}}$ of \overline{m} .

Lemma 2. (Lemma 3.1 in [1]) For $a \in \mathbb{R}^m$, $m(a) < ||| a |||^{s_0} = 1$, if and only if m(a) < 1 and $m(\xi a) = \infty$ for all $\xi > 1$.

The proof of Theorem 2. Suppose that m(x) fulfills (5). Then, from the equivalence between $|| \cdot ||$ and $||| \cdot |||$, we have

$$\lim_{\|\|x\|\to\infty} m(x)/\|\|x\|\| = \infty$$

If m is not uniformly increasing, then there exists a constant number C such that

4) The conjugate modular m of m is to be defined as m(a) = sup {a(x)-m(x)} (a∈ R). (a∈ R). 5) A modular m is said to be uniformly finite, if, for each ξ>0 sup m(ξx)<∞. 6) A modular m is said to be uniformly increasing, if lim 1/ε m(x)≥1 7) A modular m is said to be reflexive, if the relation: m(a)=sup {x∈R} (a)-m(x)} (a∈ R^m) x∈R

holds, where \overline{m} is the conjugate modular of m. The reflexivity of m has been shown in [3, Theorem 39.3] and [5, §2.1].

8) The norm $||| \cdot |||$ is defined as $|||a||| = \inf_{m(\xi a) \le 1} 1/|\xi|$, and then we get $|||x||| \le |||x||| \le 2|||x|||$ for $x \in \mathbb{R}^m$.

K. HONDA

 $\lim_{\xi\to\infty}\frac{1}{\xi}\inf_{m(x)\geq 1}m(\xi x) < C$

Therefore, we have, for all sufficiently large ξ , $\inf_{m(x)\geq 1} m(\xi x) < \xi C$, and there exist x_{ξ} such that

 $||| x_{\varepsilon} ||| \ge 1$ and $m(\varepsilon x_{\varepsilon}) \le \varepsilon C$,

since $|||x||| \le 1$ implies $m(x) \le |||x|||$. Accordingly we have $m(\xi x_{\xi})/\xi |||x_{\xi}||| \le m(\xi x_{\xi})/\xi \le C$

for all sufficiently large ξ . This contradicts (5).

Next, we will prove the sufficiency. If (5) does not hold, then there exist x_n and C such that

(7)
$$\lim_{n \to \infty} |||x_n||| = \infty, |||x_n||| \ge 1, \ m(x_n) \le C |||x_n|||$$

and $m(\xi_0 x_n) < \infty$ for some $\xi_0 > 1$.

Moreover, we have $m(x_n/|||x_n|||)=1$, because if $m(x_n/|||x_n|||)<1$, then $m(\xi x_n/|||x_n|||)=\infty$ for all $\xi>1$ (by Lemma 2) and hence, putting $\xi=\xi_0|||x_n|||$, we get $m(\xi_0x_n)=\infty$, namely, the contradiction of (7).

Therefore, for x_n in (7) we have

where
$$g(\xi_n)/\xi_n \leq m(\xi_n x_n/|||x_n|||)/\xi_n = m(x_n)/|||x_n|||$$

 $\xi_n = |||x_n||| \text{ and } g(\xi) = \inf_{m(x)>1} m(\xi x).$

And hence m is not uniformly increasing. Thus, on account of Lemma 1, Theorem 2 is completely proved.

Remark. Since, in L_{M}^{*} , the relations (2) and (3) imply the uniform increaseness of the modular m defined by (4), Theorem 2 is a extension of Theorem 1 to the modulared semi-ordered linear space.

References

- I. Amemiya, T. Ando and M. Sasaki: Monotony and flatness of the norms by modular, J. Fac. Sci., Hokkaido Univ., Ser. I. 14, 96-113 (1959).
- [2] M. A. Krasnoselskii and Ya. B. Rutickii: Convex Functions and Orlicz Spaces (in Russian), Moscow, (1958).
- [3] H. Nakano: Modulared Semi-ordered Linear Spaces, Tokyo, Marzen (1950).
- [4] Ya. B. Rutickii: A property of the Orlicz norm, Dokl. Acad. Nauk URSS T., 138, 56-58 (1961) [see also its translation: Soviet Math., 2(3), 542-544 (1961)].
- [5] S. Yamamuro: On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc., 90, no. 2, 291-311 (1959).