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106. A Note on the Cut Extension of C.Spaces

By Kazumi NAKANO and Tetsuya SHIMOGAKI
Mathematical Institute, Hokkaidb University, Sapporo

(Comm. by K. KUNUGI, M.iLA., Oct. 12, 1962)

1. Let R be a semi-ordered linear space which is Archimedean."

A semi-ordered linear space R is called the cut extension of R, if

there exists a mapping of R into R (Ra-+aeR) such that
(C. 1) (aa-flb)--aa-flb for any a,bR and real numbers a, fl;
(C. 2) a <= b if and only if a <= b;
(C. 3) a-O (aeR, 2e) implies a-O in ;
(C. 4) R is universally continuous;2

(C. 5) for each eR there exists a system of elements aa eR (2 e A)
such that - m a.

eA

When we consider R as a lattice, R: the cut extension of lattice
R is nothing but a normal completion of R in Birkhoff’s terminology
[I].

It is well known ([4], Theorems 30.2 and 30.3) that for any

Archimedean semi-ordered linear space R there exists always R: the

cut extension of R, and R is determined uniquely up to an isomor-
phism.

Now let E be a compact Hausdorff space throughout this paper
and C(E) be the space of all continuous functions defined on E. C(E)
is a semi-ordered linear space (by the usual addition and order) which
is not always continuous, but Archimedean [2,5,6. Thus, as is

shown above, C(E): the cut extension of C(E) may be considered.

The structure of C(E) was investigated in [2 and it was proved

that C(E) is isomorphic to the C-space C(), where C is the Boolean
space associated with the lattice of regularly open sets) in E, while

’ comes to be different from the original space E in most cases.
The aim of this note is to construct a function space on E which

is isomorphic to C(E). The result is the following:

1) R is called Archimedean, if N 1--a=O for every O_aeR.
=i P

2) A semi-ordered linear space is called universally continuous, if for any bounded
system of elements" {a.a<=a,} there exists U a.

3) A subset G of E is called to be regularly open, if G-=G.
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C(E) is isomorphic (as a semi-ordered linear space) to Cq(E)/N,
where Cq(E) is a space of all bounded quasi-continuous functions on
E and N is a linear manifold of Cq(E) consisting of all f such that
f(x)=0 ]br all xA (A is a set of the first category in E which
depends on f).)

R. P. Dilworth proved in [2 that the normal completion of C(E)
(considered as a lattice) is lattice-isomorphic to the set of normal
upper semi-continuous functions) on E. This can not be, however,
regarded as a cut extension of C(E), because the set of normal upper
semi-continuous functions does not constitute a linear space in
general.

2. Let B(E) be the totality of all bounded real functions on
E. For any f e B(E) we denote by f* (f.) the upper function (resp.
lower function) of f:

f*(x) inf {sup f(y)}.
(xE)

f. (x)=sup {inf f(y)},
U yU

where U runs over all neighbourhoods of x. An element feB(E)is
called quasi-continuous 3, if ((f*).)*=(f.)*, and the totality of all
bounded quasi-continuous functions on E is denoted by C(E). The
following lemma is due to H. Nakano ([3, Theorem 4 and 11 in 63).

Lemma 1. feB(E) is quasi-continuous if and only if f is con-
tinuous at each point of the complement of a set of the first category,
and C(E) is an Archimedean semi-ordered linear space including
C(E) by the usual addition and order.

Now let N be the set of all f eC(E) such that f(x)=0 holds
for all x eE except a set of the first category which depends on f.
Since N is clearly a semi-normal manifold6 of C(E), C(E)/N comes

to be also a semi-ordered linear space and we denote by an element
of Cq(E)/N, i.e. a residue class by N, and denote also C(E)/N by C(E).

For any feC(E)C(E), f denotes an element of C(E) to which
f belongs.7) Since the set {x:f(x)#g(x)} (f#g,f, geC(E)) is open

and not of the first category, f#g (f, g eC(E)) implies fg.
We shall show in the sequel that C(E) is isomorphic to the cut

extension of C(E). Since it is clear that the mapping: C(E)g-g
e C(E) satisfies (C.1) and (C.2) in 1, we shall prove that it does also

4) For any AcE, A’ denotes the complement of A. Since E is compact, EAr is
dense in E.

5) A bounded function f is called to be normal upper semi-continuous, if (f,)*=f.
6) A linear manifold M of a semi-ordered linear space is called semi-normal, if

Ibl<__lal, aeM implies beM.

7) Let be the inclusion mapping: C(E)A,C(E) and q be the quotient mapping:

C(E) -, C(E)/N. Then f$--q(t(f)) for fe C(E).
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the conditions (C.3), (C.4) and (C.5) in the following lemmas.

Lemma 2. For any 5fC(E) there exists O<fC(E) such

that f and the mapping: C(E)gg’eC(E) satisfies (C.3).
Proof. Let reCk(E) be an arbitrary element belonging to

By virtue of Lemma 1 there exists a set A of the first category

such that f is continuous and f(x)>_O on EA’. As , there exist
>0 and a open set 0# such that [x’f(x)>e}OA’. Let xoeO
and a(x) be a continuous function on E satisfying

i) a(Xo)-e, O<=a(x)<= for all xeE;
ii) a(x)- 0 for all xeO’.)

For this aeC(E) we have a(x)<=<f(x) for all xeOA’ and a(x)-O<=f(x)
on O’A’. From this it follows that a(x)<=f(x) holds for all xEA’,
hence a ; holds. The remainder of this lemma is the direct conse-
quence of this fact. Q.E.D.

Lemma :. For any bounded system {’C(E), A} of con-
tinuous functions, putting fo(x)--sup (x) ( A), we obtain a quasi-

2A

continuous function foeCq(E) for which o-- [J holds in Cq(E).

Proof. It follows from the definition of f0 that fo is lower semi-
continuous, hence quasi-continuous by virtue of Theorem 2 of 63
in [3]. As {} is a bounded system, f0 is also evidently bounded
and fo Cq(E). fo(X) (x) for every x eE and ), e A implies fo => (2 e A)
and also fo_-__( (2eA). Conversely let be an element of Cq(E) for
which >__ (2A) holds. If jo--Jo,0, there exists O<=heC(E) such
that virtue of the above lemma. It follows from
above h+Jo=<A and i’o (A), hence h+A. Since fo
is quasi-continuous, there exists a set A of the first category such
that is continuous at each point of EA’. Now we have from above

h(x)+(x) <=fo(X) for all x EA’ and 2 e A,
because for any 2eA h(x)+(x)<=ho(x) holds for every xEA’B, where
B is a set of the first category and EA’B is dense in EA’.) As
2eA is arbitrary, it follows from above that h(x)+sup(x)<=fo(X),
whence h(x)--O on EA’, which contradicts the assumption that h0.
Therefore we have j;o--Jo" 0, i.e. j;o:, consequently A- [_J .

eA
Q.E.D.

Lemma 4. For every Cq(E) there exists a system of continu-

8) We denote by the equal relation and the order relationi n Cq(E) respec-
tively.

9) Since E is compact, E is completely regular.
10) This means that f (eA) for some fC(E).
11) Since A-B is of the first category and E is compact, A’B’ is also dense in E.
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ous functions {q C(E), A} such that f’-- [J , i.e. the mapping

C(E) f->f Cq(E) satisfies (C.5).
Proof. Let F be a set: {f’feC(E), f}. As f is bounded on

E for an arbitrary fj, F is a bounded system of continuous func-
tions and fo (fo(x)-supf(x) (xE)) is’a quasi-continuous function

with J;o-<:_" ? by Lemma 3. If 2; A, then there exists 0f sC(E) for

which ]:--j;o>__" f holds. In view of the construction of F and f0 we
obtain a contradiction by the same way as the proof of the preced-
ing lemma, whence we have j; jo [if. Q.E.D.

Lemma 5. Cq(E) is untiversally continuous.

Proof. Let A J (2 A) and r be the set {f" f C(E), f=A for
some 2cA}, then F is a bounded system in C(E) and by virtue of

Lemma 3 there exists fo Cq(E) for which f0-- [J f’ holds. From

this and the above lemma we may infer easily that J;o [_J J. There-
A

fore Cq(E) is universally continuous. Q.E.D.
Collecting the results of Lemma 1--Lemma 5, we obtain
Theorem 1. The cut extension of C(E) is isomorphic to Cq(E)

=Cq(E)/N.
:. An element f e B(E) is called normal quasi-continuous, if

f.-(f*), and f*-(.f.)* hold. Let be the totality of all normal
quasi-continuous functions belonging to Cq(E). It is evident that
C(E) Cq(E), hence we may consider Yf/N, i.e. the image q() of
? by the quotient mapping q" Cq(E)-Cq(E)/N. For each f Cq(E),
let f be defined by the formula:

f(x)-inf [supf(x)} (xE),
xfU yEUA

where A is a set of the first category such that f is continuous on
A’. Then f* is normal upper semi-continuous ([3, Theorem 17 in
62), i.e. ((f).)* f and obviously f e with f f e N. Therefore

we may see that Yf/N=Cq(E)/N holds. From this and Theorem 1 it
follows that /N is a universally continuous semi-ordered linear
space.

Now we introduce an equivalent relation (I) in as follows:
def.

f g (I) f, g : if and only if
g. =<f__<g* (or equivalently f. <__g<=f*).

We denote by Cq(E) the space of the equivalence-classes of by
the relation (I). Clearly we may define an order relation of Cq(E),
that is, for any M, M.Cq(E) we write MgM. if and only if f.
(or f*<=g*) holds,1) where feM and geM. respectively.

12) Indeed, as f, g!g, f._g, implies f*_g* and conversely.
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Let f,g with f--geN. Then we have g,f* and (g,)*_<f*.
As g is normal upper semi-continuous, we obtain

g<__g*--(g.)*_< f*.
Similarly we can show that f--gN implies f.__<g. Hence we may
conclude that fg (N) implies f-----g (I) for f, g. On the other
hand, since f*(x)=f.(x) holds for every xEA for any fe, f=---g
(I) implies f-=g (N). Therefore there exists an one to one mapping

from Cq(E) to Cq(E), which satisfies also if and only if f
(I) in . Since we can see easily that Cq(E) comes to be linear
space in virtue of this mapping, we obtain by virtue of Theorem

Theorem 2. The cut extension of C(E) is isomorphic to Cq(E),
that is, the space of all normal quasi-continuous functions on E,
where two elements f, g are identified if their upper unctions (or
equivalently lower functions) coincide.
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