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106. A Note on the Cut Extension of C-Spaces

By Kazumi NAKANO and Tetsuya SHIMOGAKI
Mathematical Institute, Hokkaidd University, Sapporo
(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1962)

§1. Let R be a semi-ordered linear space which is Archimedean.”
A semi-ordered linear space R is called the cut extension of R, if
there exists a mapping of R into B (Raa—mﬁefe) such that

(C.1) (aa+ ﬁb)ﬁzaaf"—l- Bb% for any a,beR and real numbers o, B;

(C.2) a=b if and only if ot <k

(C.3) N a:=0 (a;€R, de4) implies DA“?:O in R;

(C.4) R is universally continuous;®
(C.5) for each @eR there exists a system of elements a,c R (1)
such that 4= | a2,

€4

When we consider R as a lattice, R: the cut extension of lattice
R is nothing but a normal completion of R in Birkhoff’s terminology
[1].

It is well known ([4], Theorems 30.2 and 30.3) that for any
Archimedean semi-ordered linear space R there exists always R the
cut extemsion of R, and R is determined uniquely up to an isomor-
phism.

Now let E be a compact Hausdorff space throughout this paper
and C(E) be the space of all continuous functions defined on E. C(E)
is a semi-ordered linear space (by the usual addition and order) which
is not always continuous, but Archimedean [2,5,6]. Thus, as is

shown above, Ca}‘)z the cut extension of C(E) may be considered.
A\
The structure of C(E) was investigated in [2] and it was proved

that C/(\E') s isomorphic to the C-space C(£), where & is the Boolean

space associated with the lattice of regularly open sets® im E, while

& comes to be different from the original space E in most cases.
The aim of this note is to construct a function space on E which

is isomorphic to C&E‘). The result is the following:

1) R is called Archimedean, if F’]I—t—a=0 for every 0<a€R.

2) A semi-ordered linear space is called universally continuous, if for any bounded
system of elements : {a:: a1=a, 1€ A} there existsZUAax.
€

3) A subset G of E is called to be regularly open, if G°=G.
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CZJ\E) 18 1somorphic (as a semi-ordered linear space) to C,(E)/N,
where C(E) is a space of all bounded quasi-continuous functions on
E and N is a linear manifold of C(E) consisting of all f such that
f(2)=0 for all xcA} (A, is a set of the first category im E which
depends on f).*

R. P. Dilworth proved in [2] that the normal completion of C(E)
(considered as a lattice) is lattice-isomorphic to the set of normal
upper semi-continuous functions® on E. This can not be, however,
regarded as a cut extension of C(¥), because the set of normal upper
semi-continuous functions does not constitute a linear space in
general,

§2. Let B(E) be the totality of all bounded real functions on
E. For any feB(E) we denote by f* (fy) the upper function (resp.
lower function) of f:

£*@)=in {sup f (¥)).
U yeU
v ()=sup {inf f(W)},
where U runs over all neighbourhoods of #. An element fe¢B(E) is
called quasi-continuous [3], if ((f*).)*=(fs)*, and the totality of all
bounded quasi-continuous functions on E is denoted by C,(E). The
following lemma is due to H. Nakano ([3], Theorem 4 and 11 in §63).

Lemma 1. feB(E) is quasi-continuous if and only if f is con-
tinuous at each point of the complement of a set of the first category,
and C(E) is an Archimedean semi-ordered linear space including
C(E) by the usual addition and order.

Now let N be the set of all feC/(E) such that f(x)=0 holds
for all xcE except a set of the first category which depends on f.
Since N is clearly a semi-normal manifold® of C(E), C,(E)/N comes

to be also a semi-ordered linear space and we denote by f an element
of C,(E)/N, i.e. a residue class by N, and denote also C,(E)/N by C(E).

For any feC(E)CC/(E), F° denotes an element of C,(E) to which
f belongs.” Since the set {z: f(x)xg9(x)} (f=g,f, 9¢C(E)) is open
and not of the first category, fg (f, g¢C(E)) implies f° .

We shall show in the sequel that C,(F) is isomorphic to the cut

extension of C(E). Since it is clear that the mapping: C(E)> g—>g°
eC,(E) satisfies (C.1) and (C.2) in §1, we shall prove that it does also

4) For any ACE, A’ denotes the complement of A. Since E is compact, EA/ is
dense in E.

5) A bounded function f is called to be normal upper semi-continuous, if (fx)*=f.

6) A linear manifold M of a semi-ordered linear space is called semi-normal, if
[b]=<|al, a€ M implies be M.

7) Let ¢ be the inclusion mapping: C(E)—'>Cq(E) and ¢ be the quotient mapping:
Cq(E)—”>Cq(E)/N. Then F¢=q(:(f)) for fEC(E).
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the conditions (C.8), (C.4) and (C.5) in the following lemmas.

Lemma 2. For any 0= feC (E)® there exists 0< feC(E) such
that f<f and the mapping: C(E)> g—)g‘A‘qu(E) satisfies (C.8).

Proof. Let feC/(E) be an arbitrary element belonging to f .
By virtue of Lemma 1 there exists a set A of the first category
such that f is continuous and f(x)=0 on EA'. As ()§ f, there exist
¢>0 and a open set Ox¢ such that {z:f(x)>e204". Let x,€0
and a(z) be a continuous function on E satisfying

i) a(x)=¢, 0=a(x)<e for all xcE;

ii) a(x)=0 for all xc0O".”
For this aeC(E) we have a(z)<e< f(x) for all ze0OA’ and a(x)=0= f(x)
on O’A’. From this it follows that a(x)=<f(x) holds for all zeEA’,
hence azé f holds. The remainder of this lemma is the direct conse-
quence of this fact. Q.E.D.

Lemma 3. For any bounded system'® {p,:¢,¢C(E), Ac A} of ¢con-
tinuous functions, putting fo(x)=su¥l) p.(x) (1€ ), we obtain a quasi-

continuous function f,eC(E) for which f'oilydgo% holds in C(E).
Proof. It follows from the definition of f, that f, is lower semi-
continuous, hence quasi-continuous by virtue of Theorem 2 of §63
in [8]. As {¢;};c4 is a bounded system, f, is also evidently bounded
and f,eC(E). fi(x)=¢:(x) for every xcE and 2¢ 4 implies f,=¢, (i€ 1)
and also foggoi (2¢4). Conversely let g be an element of C,(E) for
which 'gggof (A€ ) holds. If f},—fomggo, there exists 0=<heC(E) such
that (')ghg g‘f},—f},mg by virtue of the above lemma. It follows from
above hi+f,~g=<f, and @i<f,~§ (1), hence hi+¢i<f,. Since £,
is quasi-continuous, there exists a set A of the first category such
that f, is continuous at each point of EA’. Now we have from above

hx)+ o (x) < fo(x) for all xe EA’ and 21¢4,

because for any 1€ 4 h(x)+ ¢,(x) <hyx) holds for every xe EA’ B}, where
B, is a set of the first category and EA’B] is dense in EA'.*® As
1€d is arbitrary, it follows from above that h(w)—l—ﬁlelllt) 0,(2) = fo(),
whence h(x)=0 on EA’, which contradicts the assumption that 2=0.

Therefore we have fo—ﬂ,mgio, ie. f;,_ﬁ_il, consequently f,= U gof.
“QED.
Lemma 4. For every f'qu(E) there exists a system of continu-

8) We denote by =, £ the equal relation and the order relationi n Cy(E) respec-
tively.

9) Since E is compact, E is completely regular.
10) This means that ¢;<f (1€ 4) for some feC(E).
11) Since A—B; is of the first category and E is compact, A’B’; is also dense in E.
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ous functions {p,eC(E), 2eA} such that f= UAgo‘;’\, ie. the mapping
A A€
C(E)> f—>feC(E) satisfies (C.5).
Proof. Let F be a set: {f: feC(E), f<f). As f is bounded on

E for an arbitrary f ef , F' is a bounded system of continuous func-
tions and f, (fo(x)=suﬁp f(x) (xeE)) is' a quasi-continuous function
je

with f,<f by Lemma 8. If f %7, then there exists 0= feC(E) for

which f— fog f ¢ holds. In view of the construction of F' and Jo we
obtain a contradiction by the same way as the proof of the preced-

ing lemma, whence we have f=f,= Ung. Q.E.D.
fe
Lemma 5. Cy(E) is untiversally continuous.

Proof. Let f,<f (1e/) and F be the set {f :fecC(E), f¢<f, for
some A¢A}, then F is a bounded system in C(E) and by virtue of
Lemma 3 there exists f,¢C,(E) for which f;ﬁfUchA holds. From

this and the above lemma we may infer easily that f;i U Af; . There-
A€

fore C,(F) is universally continuous. Q.E.D.
Collecting the results of Lemma 1~Lemma 5, we obtain
Theorem 1. The cut extension of C(E) is isomorphic to C,(E)

=C,(E)/N.

§3. An element feB(E) is called normal quasi-continuous, if
Fe=(f*)s and f*=(f,)* hold. Let I be the totality of all normal
quasi-continuous functions belonging to C,(E). It is evident that
CEYCMCC,(E), hence we may consider M/N, i.e. the image q(IN) of
M by the quotient mapping q:Cq(E)—ng(E)/N. For each feCy/(E),
let f* be defined by the formula:

fr(@)=inf {sup F(@)} (veE),

where A is a set of the first category such that f is continuous on

A’. Then f* is normal upper semi-continuous ([3], Theorem 17 in

§62), i.e. (f*)s)*=r" and obviously f*eM with f*—feN. Therefore

we may see that M/N=C(E)/N holds. From this and Theorem 1 it

follows that M/N is a wuniversally continuous semi-ordered linear
space.

Now we introduce an equivalent relation (I) in M as follows:

F=g () f, geM if and only if

9+ =f=g* (or equivalently f,=g=s").
We denote by C,,(E) the space of the equivalence-classes of M by
the relation (I). Clearly we may define an order relation of C,,(E),
that is, for any M,, M,eC, (E) we write M, <M, if and only if f, <g.
(or f*=g*) holds,”® where feM, and ge M, respectively.

12) Indeed, as f, €M, fx=gx implies f*<g* and conversely.
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Let f, geM with f—geN. Then we have g, <f* and (g,)*<f*.
As ¢ is normal upper semi-continuous, we obtain
9=g*=(g:)*=f*.
Similarly we can show that f—geN implies f,<g. Hence we may
conclude that f=g (N) implies f=g (I) for f,geM. On the other
hand, since f*(x)=f(x) holds for every xeEA} for any feWM, f=g
(I) implies f=g (N). Therefore there exists an one to one mapping

from C(E) to C,(E), which satisfies also f<g if and only if f<g
(I) in M. Since we can see easily that C,,(E) comes to be linear
space in virtue of this mapping, we obtain by virtue of Theorem 1

Theorem 2. The cut extension of C(E) is isomorphic to C,(E),
that is, the space of all mormal quasi-continuous functions on E,
where two elements f,g are identified if their upper functions (or
equivalently lower fumnctions) coincide.
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