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Proof of Lemma 4. We can suppose without loss of generality
that 3E and 3F are regular for the Dirichlet problem. By EE
G(z, Zo)-G(z, Zo)0 is clear. Since Gi(z, Zo)-Gg(z, Zo)--O on 3F,
by the minimum principle we have G(z, Zo)-G(z,zo)O’ on 3F.
0n the other hand, ’ ’rz G(z,G(Z, Zo) Zo) 0 on 3F. Next Zo)

F2 -G( Zo) on E-a(z, Zo) z,(Z, Zo)G(z, > Thus we(z, Zo) Zo)
have by the maximum principle

G(z, Zo)-- G’(z, Zo) >= G(z, Zo)--Gx(z," Zo). ( 2
By definition we have G(z, Zo)--G+(z, Zo)-G(z, Zo). Put F

F, F-- F[, E- F and E- F. Then G+(z, Zo)--G+(z,

((z,Zo) (,(z, Zo) (z, Zo))+(,,(z, Zo) +’(z, Zo)) Zo)-(z,
Zo))+ (,(z,’ Zo)-Sg: (z, Zo)) ((z, Zo)-’(z, Zo))+(’(z, Zo)- ’(z, Zo))
by (2). In this way proceed, then we have

Zo)-, z, Zo) ( ’(z, Zo)- ’(z, Zo)). 3 )
Lemma 5. Leg D be a simply connected domain and le$ L

-E[z’OReza, Im z=O be a segmen$ and le$ R be a closed se$

such that D--L--R is simply connected.
Leg A be a closed segmeng on L--R

such ghag A--Ez z--a < 3, Im z- O
and O a a. a( a. Put A

p --A. Le$ D’ and be simply con-
necged domains such hag DD’(A
+R), dist (3, A) > 0 for < 3o, dist (3,
3D’) > 0 and D’-- L--R is also simply
connected. Le$ Do be a compac$ do-
main in D’ such ha dist (, Do) > 0.
Le w(z, A, D--L--R) be the harmonic

Fig. 1 measure of A relative o D--L--R and
leg G(z, zo, D’) be the Green’s function of D’. Then for any given
positive number we can find a constant 8(e) such tha$

w(z, A, D--L--R)< on 3 for 3<
G(z, Zo, D’)

Let Zo be a fixed point in D. Map D--L conformally onto
<1 by $=f(z)so that ZOOS-0. Let L’ be a closed subset of (L--R)
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D’ such that L’ is contained completely in D’ and containing
3FVIL. Then $=f(z) is analytic on L’. Hence there exist constants
N and M such that

0N[f’(z) IM c in a neighbourhood of L’. ( 4
Since dist (3F, A)>0 implies dist (3F, A)0, lira arg$-arg$l0". A
F, where F and A are the images of F and A. On the other

,,1f (1--2r cos(l-- r)(--)+r) d"
reehand, w(z, A, D--R--L)--w(, A)---5-

$. Hence

w(z,A,D_L_R)<= length of Ag (l_r) as z->L and zeF. (5)
2

Denote Eze3F" dist (z, L)<h by OF. Then by (4) there exist con-
stants 6, M. and 4 such that

w(z, A, D-- L-- R) <= M(length of A)h for zF, 3<, h< 3, 6
where h-dist (z, L)).

Map D’ onto ]]<1 by -g(z) so that Zo-->-0. Then g(z) is
analytic on L’ and g’(z) is continuous in a neighbourhood of L’ with
respect to Zo, because Do is compact. Hence there exist constants
N, M and such that O<N<g’(z)<M for zeF and dist (z, L’)

1
3. Now G(z, zo, D’)-log. Hence there exist constants and

N such that
G(z, Zo, D’)>= h N in 3F for h <, 7

because --3G(, O, D)--I at I1--1. On the other hand,
3n

G(z, zo, D’)>N,>O for ze(3F--3F.). ( 8
Hence by (6), (7) and (8) we can choose (s) such that

w(z’A’D--L--R)e on F for 38() and for any zoeDo.
G(z, Zo, D’)

Lemma 6. Let D(n--1, 2,. .) be a domain such that D D.
Let Do be a compact domain in D. Let {p} (i--1,2, m--1,2,...)
be a sequence such that {p} determine the same K-Martin’s point
relative to D for every n, in other words, lira K(z, p, Dn)--lim K(z,

P’ and Po is a fixed point in Do.nn) K(z, nn)--G(z, Dn)
P’ P’ G(po, p, D)
Let (z, Zo, D) and G(z, Zo, D) be Green’s functions of D and D re-

spectively. If G(p, z, D)--G(p, z, nn) n for any ze Do and lim
G(p, z, D)

----0 (i--1,2), then {p} and {p} determine the same K-Martin’s
point relative to D.

In fact, from the above inequality we have
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lim G(p, z, Dn) lim
G(p2, z, D) " lim G(p2, z, D)

G(p, Po, n) e(p, Po, D)
< (1--e) G(p, Po, D)

s__ lim K(p2, z, D) < SM(Do) in Do,
(1--z) (1--)

where M(Do)--sup (lim K(pL, z, D))< . Since p[] and {p} deter-
o G(p, z, D)mine the same point, we have bYG(P, Po, D)

=K(p, z, D)

lim K(p, z, D)--lira K(p, z, n)]< 2/(no)in Do.
Let e0. Then lira K(p, z, D)-lira K(p, z, D) in Do, whence

lira K(p, z, D)-lim K(p, z, D) for zD. Thus [p] and [p] deter-

mine the same K-Martin’s point relative to D.
xample . Domain D*. Let m (n1,2, 3,...) be a positive

number such that

1 1
= m-- 72u

6and put a=e- Then log (6/2"
n n"

Let X be a square, , t, s, s and s be slits and R be a rec-
tangle ss follows"

" O<Re z<6, O<Im z<6.
n" Rez=3, 6Im z4.5+a for n--0 and

6 6 6 6R"
_

Re

_
+ 1, +>=I

_
2 2, where is 1 or

according as i odd or even.

ONRe zNl, Im 6 2<Re <4, Im 6

." gNRe 6, I=.
Put D* =N--(+R+++)--.

Domai ,, <. Slis A and domains A, and A. Le A (i--1,2)
as follows"

where --1 or 4 aeeording as i-1 or . Pu A0--A+Ag and A--
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Fig. 2

Let F be a simply connected domain containing R as follows"
6 6 <imz< 6 6 and let/,andF," a--l<=Re z_<_+l,
2 2+---= 2 2+

A be segments on s+s (for odd n) or on s+s (for even n) such
that A" a-- 0.75 a =<Re z__<a--0.75+a,

A" a+ 0.75 a =< Re z__<a+0.75+a, (0a0.2),
where a=1.5 or 4.5 according as n is odd or even. Put

Put D"=9--s--R,--s (for odd n) and -gt--s R s, (for even
n). Let w(z, ./1, D’) be the harmonic measure of A relative to
Let G(z, Zo, 9) be the Green’s function of 9t. Put M=max G(z, Zo,

on F as zo varies in o. Then M<. Let G(z, zo, D*)be the
Green’s function of D*- Zo /o. Now D" and D* are simply connected.
Hence by Lemma 5 we can find a, such that

Mw(z, 4, D’)<=-zG(z, Zo, D*) on 3F for any Zoeo. (8)

We suppose that a is determined as (8) and / is defined for
every n.

Let ’s and ’s be segments on s and s such that
for odd number n,s O<=Re z=<0.75--a and ’s-s,

’s-s and ’s" 5.25+a __< Re z_6 for even number n.
Then ’ss, and ’ss.

Let p (i-1, 2 and n-l, 2, 3,...) be a sequence such that p"

__1(6-:+2i6)i,c-t-- where 1<c,.<2 for i--1 and 4<c5 for i--2.

Put D,=--o--(’s+’s,)-(+R+s-t-s+s). Then D is sim-

ply connected. Map D onto CI’I. Then since {t}" n>m+2 is a
fundamental sequence determining a prim Ende, the images of
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and {p} tend to the same, point for any c.
following

Hence we have the

Fig. 3

Proposition 1. {p} and {p] determine the same K-Martin’s
point .relative to D br any m.

Put --D,--Y. (s+sq-sq--R,q-,,--A,,) = --’o-- (’s.-t-’s)-
1+1

] (s+s+s+ +R-- ft.) (s+s+s+R+). Then D
/+1 m+l

is compact in D. Henee by Lemma 1 and Proposition 1 we have
the following

Proposition 2. {p} and {p} determine the same K-Martin’s
point relative to ), i.e. lira K(p,, z)=lim K(p, z) K(p, z)

G(z, p,) and Po is a fixed point in o.
G( o,

The domain )oo=.-0-Y, (’sq-’s,)-- (s+s/s+q-R
+1

--I) as m-->oo. By D’q-lD* for any n we have w(z, 4,
)) <=w(z, , D’) and G(z, zo, )>_G(z, z0, D*). Consider G(z, Zo,
and G(z, Zo, ) in . Then G(z, Zo, t)oo) >=G(z, Zo, ))=0 on
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and Mw(z, /1, ,)>=G(z, Zo,
m+l

for any Zoe3o. Hence by the maximum principle

Mw(z,/1, )+(z, Zo, )->_(z, Zo,)
>=G(z, Zo,) in "Zo eAo. (10)

,=2

ra=4

(a) (b)

Fig. 4

(8) --G(z, zo, ,)>=-G(z,_. zo, D*) >= M.w(z, A., D") M.w(z,
1 G(z, Zo, )--0-M,w(z,A,,) on OF,. 0n the other hand,

) on 3--F,, whence by the maximum principle G(z, Zo,)
M,w(z, A,,) in --F,. Hence

a(z, Zo, )> a(z, Zo, )>E Mw(z, ,)
in --F." Zoedo. (11)

ra+I

Thus by (10) and (11) . G(,zo,)+G(z,

)>G(z, Zo, ,) in --F,. Now {p}---] F,. Put
m+l m+l

Then lim e=0. Hence G(p, zo, )-G(p, zo, ,)<z,G(p, Zo, )
<=s,G(p, zo, ). Hence by Proposition 2 and by Lemma 6 we have
the following proposition which is given in the following paper.


