103. Relations among Topologies on Riemann Surfaces. II

By Zenjiro Kuramochi
Mathematical Institute, Hokkaido University
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1962)

Proof of Lemma 4. We can suppose without loss of generality that ∂E^{i} and ∂F^{i} are regular for the Dirichlet problem. By $E^{1} \supset E^{2}$ $G_{B 2}^{F^{i}}\left(z, z_{0}\right)-G_{B 1}^{F^{i}}\left(z, z_{0}\right) \geqq 0$ is clear. Since $G_{B 2}^{F^{2}}\left(z, z_{0}\right)-G_{B 1}^{F i}\left(z, z_{0}\right)=0$ on ∂F^{2}, by the minimum principle we have $G_{E 2}^{F 2}\left(z, z_{0}\right)-G_{E 1}^{F 2}\left(z, z_{0}\right) \geqq 0$ on ∂F^{1}. On the other hand, $G_{B 2}^{F_{1}}\left(z, z_{0}\right)-G_{B 1}^{F_{1}}\left(z, z_{0}\right)=0$ on ∂F^{1}. Next $G_{F 2}^{F_{2}^{2}}\left(z, z_{0}\right)$ $-G_{E 1}^{F 2}\left(z, z_{0}\right)=G_{E 2}^{F_{2}^{2}}\left(z, z_{0}\right) \geqq G_{E 2}^{F_{1}^{1}}\left(z, z_{0}\right)=G_{E 2}^{F_{1}^{1}}\left(z, z_{0}\right)-G_{E 1}^{F_{1}^{1}}\left(z, z_{0}\right)$ on ∂E^{1}. Thus we have by the maximum principle

$$
\begin{equation*}
G_{\# 2}^{F_{2}^{2}}\left(z, z_{0}\right)-G_{F 2}^{F_{1}^{1}}\left(z, z_{0}\right) \geqq G_{E 1}^{F_{2}^{2}}\left(z, z_{0}\right)-G_{E 1}^{F_{1}}\left(z, z_{0}\right) \tag{2}
\end{equation*}
$$

By definition we have $G_{K}^{L}\left(z, z_{0}\right)=G^{L+K}\left(z, z_{0}\right)=G_{L}^{K}\left(z, z_{0}\right)$. Put F^{1} $=F_{1}^{1}, F^{2}=F_{1}^{2}, E^{1}=\sum_{i=2}^{n} F_{i}^{1}$ and $E^{2}=\sum_{i=2}^{n} F_{i}^{2}$. Then $G^{E 2+F^{2}}\left(z, z_{0}\right)-G^{E 1+F^{2}}(z$, $\left.z_{0}\right)=\left(G_{B 2}^{F_{2}^{2}}\left(z, z_{0}\right)-G_{F 2}^{F 1}\left(z, z_{0}\right)\right)+\left(G_{F i}^{F^{2}}\left(z, z_{0}\right)-G^{E 1+F 1}\left(z, z_{0}\right)\right)=\left(G_{F 2}^{F 2}\left(z, z_{0}\right)-G_{F 2}^{F 1}(z\right.$, $\left.\left.z_{0}\right)\right)+\left(G_{F_{1}}^{F^{2}}\left(z, z_{0}\right)-G_{F_{1}^{1}}^{T_{1}}\left(z, z_{0}\right)\right) \leqq\left(G^{F^{2}}\left(z, z_{0}\right)-G^{F^{1}}\left(z, z_{0}\right)\right)+\left(G^{E^{2}}\left(z, z_{0}\right)-G^{E^{1}}\left(z, z_{0}\right)\right)$ by (2). In this way proceed, then we have

$$
\begin{equation*}
G^{\frac{F^{F_{i}^{2}}}{i}}\left(z, z_{0}\right)-G_{i}^{\Sigma F_{i}^{1}}\left(z, z_{0}\right) \leqq \sum_{i}\left(G^{F_{i}^{2}}\left(z, z_{0}\right)-G^{F_{i}^{1}}\left(z, z_{0}\right)\right) \tag{3}
\end{equation*}
$$

Lemma 5. Let D be a simply connected domain and let L $=E[z: 0 \leqq R e z \leqq a$, Im $z=0]$ be a segment and let R be a closed set such that $D-L-R$ is simply connected.

Let Λ_{i}^{δ} be a closed segment on $L-R$

Fig. 1 such that $\Lambda_{i}^{\delta}=E\left[z:\left|z-a_{i}\right|<\delta, \operatorname{Im} z=0\right]$ and $0<a_{1}<a_{2} \cdots<a_{n}<a$. Put Λ^{δ} $=\sum \Lambda_{i}^{\delta}$. Let D^{\prime} and Γ be simply connected domains such that $D \supset D^{\prime} \supset\left(\Lambda^{\delta}\right.$ $+R$), dist $\left(\partial \Gamma, \Lambda^{\delta}\right)>0$ for $\dot{o}<\delta_{0}$, dist $(\partial \Gamma$, $\left.\partial D^{\prime}\right)>0$ and $D^{\prime}-L-R$ is also simply connected. Let D_{0} be a compact domain in D^{\prime} such that dist $\left(\Gamma, D_{0}\right)>0$. Let $w\left(z, \Lambda^{\delta}, D-L-R\right)$ be the harmonic measure of Λ^{δ} relative to $D-L-R$ and let $G\left(z, z_{0}, D^{\prime}\right)$ be the Green's function of D^{\prime}. Then for any given positive number ε we can find a constant $\delta(\varepsilon)$ such that

$$
\frac{w\left(z, \Lambda^{\delta}, D-L-R\right)}{G\left(z, z_{0}, D^{\prime}\right)}<\varepsilon \text { on } \partial \Gamma \text { for } \delta<\delta(\varepsilon) .
$$

Let z_{0} be a fixed point in D. Map $D-L$ conformally onto $|\xi|$ <1 by $\xi=f(z)$ so that $z_{0} \rightarrow \xi=0$. Let L^{\prime} be a closed subset of $(L-R)$
$\cap D^{\prime}$ such that L^{\prime} is contained completely in D^{\prime} and containing $\partial \Gamma \cap L$. Then $\xi=f(z)$ is analytic on L^{\prime}. Hence there exist constants N_{1} and M_{1} such that

$$
\begin{equation*}
0<N_{1}<\left|f^{\prime}(z)\right|<M_{1}<\infty \text { in a neighbourhood of } L^{\prime} . \tag{4}
\end{equation*}
$$

Since $\operatorname{dist}\left(\partial \Gamma, \Lambda^{\delta}\right)>0$ implies dist $\left(\partial \Gamma_{\xi}, \Lambda_{\xi}^{\delta}\right)>0, \lim _{\substack{\mid \xi_{1} 1-1 \\ \xi_{2} \in \Lambda_{\xi}^{\delta}}}\left|\arg \xi_{1}-\arg \xi_{2}\right|>0$: $\xi_{1} \in \partial \Gamma_{\xi}$, where Γ_{ξ} and Λ_{ξ}^{δ} are the images of Γ and Λ^{δ}. On the other hand, $w\left(z, \Lambda^{\delta}, D-R-L\right)=w\left(\xi, \Lambda_{\xi}^{\delta}\right)=\frac{1}{2 \pi} \int_{\Lambda_{\xi}^{\delta}} \frac{\left(1-r^{2}\right)}{\left(1-2 r \cos (\theta-\varphi)+r^{2}\right)} d \varphi: r e^{i \theta}$
$=\xi$. Hence

$$
\begin{equation*}
w\left(z, \Lambda^{\delta}, D-L-R\right) \leqq \frac{\text { length of } \Lambda_{\xi}^{\delta}}{2 \pi} \times\left(1-r^{2}\right) \text { as } z \rightarrow L \text { and } z \in \Gamma . \tag{5}
\end{equation*}
$$

Denote $E[z \in \partial \Gamma$: dist $(z, L)<h]$ by $\partial \Gamma^{h}$. Then by (4) there exist constants δ_{3}, M_{2} and δ_{4} such that

$$
\begin{equation*}
w\left(z, \Lambda^{\delta}, D-L-R\right) \leqq M_{2}\left(\text { length of } \Lambda_{\delta}\right) h \text { for } z \in \partial \Gamma^{h}, \delta<\delta_{3}, h<\delta_{4}, \tag{6}
\end{equation*}
$$ where $h=\operatorname{dist}(z, L))$.

Map D^{\prime} onto $|\zeta|<1$ by $\zeta=g(z)$ so that $z_{0} \rightarrow \zeta=0$. Then $g(z)$ is analytic on L^{\prime} and $g^{\prime}(z)$ is continuous in a neighbourhood of L^{\prime} with respect to z_{0}, because D_{0} is compact. Hence there exist constants N_{3}, M_{3} and δ_{5} such that $0<N_{3}<g^{\prime}(z)<M_{3}$ for $z \in \Gamma$ and dist $\left(z, L^{\prime}\right)$ $<\delta_{5}$. Now $G\left(z, z_{0}, D^{\prime}\right)=\log \frac{1}{|\zeta|}$. Hence there exist constants and N_{4} such that

$$
\begin{equation*}
G\left(z, z_{0}, D^{\prime}\right) \geqq h N_{4} \text { in } \partial \Gamma^{\delta_{5}} \text { for } h<\delta_{6}, \tag{7}
\end{equation*}
$$

because $\frac{\partial}{\partial n} G(\zeta, O, D)=1$ at $|\zeta|=1$. On the other hand,

$$
\begin{equation*}
G\left(z, z_{0}, D^{\prime}\right)>N_{4}>0 \text { for } z \in\left(\partial \Gamma-\partial \Gamma^{\delta_{5}}\right) \tag{8}
\end{equation*}
$$

Hence by (6), (7) and (8) we can choose $\delta(\varepsilon)$ such that

$$
\frac{w\left(z, \Lambda^{\delta}, D-L-R\right)}{G\left(z, z_{0}, D^{\prime}\right)}<\varepsilon \text { on } \partial \Gamma \text { for } \delta<\delta(\varepsilon) \text { and for any } z_{0} \in D_{0}
$$

Lemma 6. Let $D_{n}(n=1,2, \cdots)$ be a domain such that $D_{n} \uparrow D$. Let D_{0} be a compact domain in D_{1}. Let $\left\{p_{m}^{i}\right\}(i=1,2, m=1,2, \cdots)$ be a sequence such that $\left\{p_{m}^{i}\right\}$ determine the same K-Martin's point relative to D_{n} for every n, in other words, $\lim _{m} K\left(z, p_{m}^{1}, D_{n}\right)=\lim _{m} K(z$, $\left.p_{m}^{2}, D_{n}\right), K\left(z, p_{m}^{i}, D_{n}\right)=\frac{G\left(z, p_{m}^{i}, D_{n}\right)}{G\left(p_{0}, p_{m}^{i}, D_{n}\right)}$ and $p_{0} i^{m}$ a fixed point in D_{0}. Let $\left(z, z_{0}, D_{n}\right)$ and $G\left(z, z_{0}, D\right)$ be Green's functions of D_{n} and D respectively. If $\frac{G\left(p_{m}^{i}, z, D\right)-G\left(p_{m}^{i}, z, D_{n}\right)}{G\left(p_{m}^{i}, z, D\right)}<\varepsilon_{n}$ for any $z \in D_{0}$ and $\lim _{n} \varepsilon_{n}$ $=0(i=1,2)$, then $\left\{p_{m}^{1}\right\}$ and $\left\{p_{m}^{2}\right\}$ determine the same K-Martin's point relative to D.

In fact, from the above inequality we have

$$
\begin{aligned}
& \left|\lim _{m} \frac{G\left(p_{m}^{i}, z, D_{n}\right)}{G\left(p_{m}^{i}, p_{0}, D_{n}\right)}-\lim _{m} \frac{G\left(p_{m}^{i}, z, D\right)}{G\left(p_{m}^{i}, p_{0}, D\right)}\right|<\frac{\varepsilon_{n}}{\left(1-\varepsilon_{n}\right)} \varlimsup_{m} \frac{G\left(p_{m}^{i}, z, D\right)}{G\left(p_{m}^{i}, p_{0}, D\right)} \\
& =\frac{\varepsilon_{n}}{\left(1-\varepsilon_{n}\right)} \varlimsup_{m} K\left(p_{m}^{i}, z, D\right)<\frac{\varepsilon_{n}}{\left(1-\varepsilon_{n}\right)} M\left(D_{0}\right) \text { in } D_{0},
\end{aligned}
$$

where $M\left(D_{0}\right)=\sup _{z \in D_{0}}\left(\varlimsup_{m} K\left(p_{m}^{i}, z, D\right)\right)<\infty$. Since $p\left\{\begin{array}{l}1 \\ m\end{array}\right\}$ and $\left\{p_{m}^{2}\right\}$ determine the same point, we have by $\frac{G\left(p_{m}^{i}, z, D_{n}\right)}{G\left(p_{m}^{i}, p_{0}, D_{n}\right)}=K\left(p_{m}^{i}, z, D_{n}\right)$

$$
\left|\lim _{m} K\left(p_{m}^{1}, z, D\right)-\lim _{m} K\left(p_{m}^{2}, z, D\right)\right|<\frac{2 \varepsilon_{n} M\left(D_{0}\right)}{1-\varepsilon_{n}} \text { in } D_{0}
$$

Let $\varepsilon_{n} \rightarrow 0$. Then $\lim K\left(p_{m}^{1}, z, D\right)=\lim K\left(p_{m}^{2}, z, D\right)$ in D_{0}, whence $\lim _{m} K\left(p_{m}^{1}, z, D\right)=\lim _{m} K\left(p_{m}^{2}, z, D\right)$ for $z \in D$. Thus $\left\{p_{m}^{1}\right\}$ and $\left\{p_{m}^{2}\right\}$ determine the same K-Martin's point relative to D.

Example 3. Domain D^{*}. Let $m_{n}(n=1,2,3, \cdots)$ be a positive number such that

$$
\sum_{n=1}^{\infty} \frac{1}{m_{n}} \leqq \frac{1}{72 \pi}
$$

and put $a_{n}=\frac{6}{2^{n+2}} e^{-m_{n}}$. Then $\log \frac{\left(6 / 2^{n+2}\right)}{a^{n}}=m_{n}$.
Let \mathfrak{R} be a square, $\tilde{s}_{n}, t_{n}, s_{n}^{1}, s_{n}^{2}$ and s_{n}^{3} be slits and R_{n} be a rectangle as follows:

丹: $0<R e z<6,0<\operatorname{Im} z<6$.
$\tilde{s}_{n}: R e z=3,6 \geqq \operatorname{Im} z \geqq 4.5+a_{1}$ for $n=0$ and
$\tilde{s}_{n}: \operatorname{Re} z=3,3\left(\frac{1}{2^{n-1}}+\frac{1}{2^{n}}\right)-a_{n} \geqq \operatorname{Im} z \geqq 3\left(\frac{1}{2^{n+1}}+\frac{1}{2^{n}}\right)+a_{n+1}: n \geqq 1$.
$t_{n}: R e z=3,3\left(\frac{1}{2^{n-1}}+\frac{1}{2^{n}}\right)+a_{n} \geqq \operatorname{Im} z \geqq 3\left(\frac{1}{2^{n-1}}+\frac{1}{2^{n}}\right)-a_{n}: n \geqq 1$.
$R_{n}: \alpha \leqq R e z \leqq \alpha+1, \frac{6}{2^{n}}+\frac{6}{2^{n+4}} \geqq \operatorname{Im} z \geqq \frac{6}{2^{n}}-\frac{6}{2^{n+4}}$, where α is 1 or 4 according as n is odd or even.
$s_{n}^{1}: 0 \leqq R e z \leqq 1$, Im $z=\frac{6}{2^{n}} . \quad s_{n}^{2}: 2 \leqq R e z \leqq 4$, Im $z=\frac{6}{2^{n}}$.
$s_{n}^{3}: 5 \leqq R e z \leqq 6$, Im $z=\frac{6}{2^{n}}$.
Put $D^{*}=\Re-\sum_{n=1}^{\infty}\left(\tilde{s}_{n}+R_{n}+s_{n}^{1}+s_{n}^{2}+s_{n}^{3}\right)-\tilde{s}_{0}$.
Domain ${ }_{e} \mathfrak{D}_{m}, l<m$. Slits Λ_{n} and domains Δ_{0} and Δ_{0}^{\prime}. Let $\Delta_{0}^{i}(i=1,2)$ as follows:

$$
\Delta_{0}^{i}=E[z: \alpha \leqq R e z \leqq \alpha+1,4 \leqq \operatorname{Im} z \leqq 5],
$$

where $\alpha=1$ or 4 according as $i=1$ or 2. Put $\Delta_{0}=\Delta_{0}^{1}+\Delta_{0}^{2}$ and $\Delta_{0}^{\prime}=$ $E\left[z: \operatorname{dist}\left(z, \Delta_{0}\right) \leqq \frac{1}{2}\right]$.

Fig. 2
Let Γ_{n} be a simply connected domain containing R_{n} as follows:
$\Gamma_{n}: \alpha-1 \leqq R e z \leqq \alpha+1, \frac{6}{2^{n}}-\frac{6}{2^{n+8}} \leqq \operatorname{Im} z \leqq \frac{6}{2^{n}}-\frac{6}{2^{n+3}}$ and let Λ_{n}^{1} and Λ_{n}^{2} be segments on $s_{n}^{1}+s_{n}^{2}$ (for odd n) or on $s_{n}^{2}+s_{n}^{3}$ (for even n) such that $\quad \Lambda_{n}^{1}: \alpha-0.75-\alpha_{n} \leqq R e z \leqq \alpha-0.75+\alpha_{n}$,

$$
\Lambda_{n}^{2}: \alpha+0.75-\alpha_{n} \leqq R e z \leqq \alpha+0.75+\alpha_{n}, \quad\left(0<\alpha_{n}<0.2\right)
$$

where $\alpha=1.5$ or 4.5 according as n is odd or even. Put $\Lambda_{n}=\Lambda_{n}^{1}+\Lambda_{n}^{2}$.
Put $D^{s_{n}}=\Re-s_{n}^{1}-R_{n}-s_{n}^{2}(f o r ~ o d d ~ n)$ and $=\Re-s_{n}^{2}-R_{n}-s_{n}^{3}$ (for even n). Let $w\left(z, \Lambda_{n}, D^{s_{n}}\right)$ be the harmonic measure of Λ_{n} relative to $D^{s_{n}}$. Let $G\left(z, z_{0}, \mathfrak{R}\right)$ be the Green's function of \Re. Put $M_{n}=\max G\left(z, z_{0}, \mathfrak{R}\right)$ on $\partial \Gamma_{n}$ as z_{0} varies in Δ_{0}. Then $M_{n}<\infty$. Let $G\left(z, z_{0}, D^{*}\right)$ be the Green's function of $D^{*}: z_{0} \in \Delta_{0}$. Now $D^{s_{n}}$ and D^{*} are simply connected. Hence by Lemma 5 we can find α_{n} such that

$$
\begin{equation*}
M_{n} w\left(z, \Lambda_{n}, D^{s_{n}}\right) \leqq \frac{1}{4^{n}} G\left(z, z_{0}, D^{*}\right) \text { on } \partial \Gamma_{n} \text { for any } z_{0} \in \Delta_{0} \tag{8}
\end{equation*}
$$

We suppose that α_{n} is determined as (8) and Λ_{n} is defined for every n.

Let ' s_{n}^{1} and ' s_{n}^{3} be segments on s_{n}^{1} and s_{n}^{3} such that ' $s_{n}^{1}: 0 \leqq R e z \leqq 0.75-\alpha_{n}$ and ' $s_{n}^{3}=s_{n}^{3}$ for odd number n, ' $s_{n}^{1}=s_{n}^{1}$ and ' $s_{n}^{3}: 5.25+\alpha_{n} \leqq R e z \leqq 6$ for even number n. Then ${ }^{\prime} s_{n}^{1} \subset s_{n}^{1}$ and ${ }^{\prime} s_{n}^{3} \subset s_{n}^{3}$.

Let $p_{n}^{i}(i=1,2$ and $n=1,2,3, \cdots)$ be a sequence such that p_{n}^{i} : $c_{n}^{i}+\frac{1}{2}\left(\frac{6}{2^{n}}+\frac{6}{2^{n+1}}\right) i$, where $1<c_{n}^{1}<2$ for $i=1$ and $4<c_{n}^{2}<5$ for $i=2$. Put $D_{m}=\Re-\tilde{s}_{0}-\sum_{i}^{m}\left({ }^{\prime} s_{n}^{1}+s_{n}^{3}\right)-\sum_{m+1}^{\infty}\left(\tilde{s}_{n}+R_{n}+s_{n}^{1}+s_{n}^{2}+s_{n}^{3}\right)$. Then D_{m} is simply connected. Map D_{m} onto $|\zeta|<1$. Then since $\left\{t_{n}\right\}: n>m+2$ is a fundamental sequence determining a prim Ende, the images of $\left\{p_{n}^{1}\right\}$
and $\left\{p_{n}^{2}\right\}$ tend to the same point for any c_{n}^{i}. Hence we have the following

Fig. 3
Proposition 1. $\left\{p_{n}^{1}\right\}$ and $\left\{p_{n}^{2}\right\}$ determine the same K-Martin's point relative to D_{m} for any m.

Put ${ }_{l} \mathfrak{D}_{m}=D_{m}-\sum_{l+1}^{m}\left(s_{n}^{1}+s_{n}^{2}+s_{n}^{3}+R_{n}+\tilde{s}_{n}-\Lambda_{n}\right)=\Re-\tilde{s}_{0}-\sum_{i}^{l}\left({ }^{\prime} s_{n}^{1}+{ }^{\prime} s_{n}^{3}\right)-$ $\sum_{l+1}^{m}\left(s_{n}^{1}+s_{n}^{2}+s_{n}^{3}+\tilde{s}_{n}+R_{n}-\Lambda_{n}\right)-\sum_{m+1}^{\infty}\left(s_{n}^{1}+s_{n}^{2}+s_{n}^{3}+R_{n}+\tilde{s}_{n}\right)$. Then $D_{m}-{ }_{l} \mathfrak{D}_{m}$ is compact in D_{m}. Hence by Lemma 1 and Proposition 1 we have the following

Proposition 2. $\left\{p_{n}^{1}\right\}$ and $\left\{p_{n}^{2}\right\}$ determine the same K-Martin's point relative to ${ }_{l} \mathfrak{D}_{m}$, i.e. $\lim K^{\mathscr{D}_{m}}\left(p_{n}^{1}, z\right)=\lim K^{\mathscr{D}_{m}}\left(p_{n}^{2}, z\right): K^{\mathscr{D}_{m}}\left(p_{n}^{t}, z\right)$ $=\frac{G\left(z, p_{n}^{i}, l \mathfrak{D}_{m}\right)}{G\left(p_{0}, p_{n}^{i}, \mathfrak{D}_{m}\right)}$ and p_{0} is a fixed point in ${ }^{n} \Delta_{0}$.

The domain $\mathfrak{D}_{m} \uparrow \mathfrak{D}_{\infty}=\Re-\tilde{s}_{0}-\sum_{1}^{l}\left({ }^{\prime} s_{n}^{1}+{ }^{\prime} s_{n}^{3}\right)-\sum_{l+1}^{\infty}\left(s_{n}^{1}+s_{n}^{2}+s_{n}^{3}+\tilde{s}_{n}+R_{n}\right.$ $-\Lambda_{n}$) as $m \rightarrow \infty$. By $D^{s_{n}}+\Lambda_{n} \supset_{\mathfrak{D}} \mathfrak{D}_{m} \supset D^{*}$ for any n we have $w\left(z, \Lambda_{n}\right.$, $\left.\mathfrak{D}_{m}\right) \leqq w\left(z, \Lambda_{n}, D^{s_{n}}\right)$ and $G\left(z, z_{0}, \mathfrak{D}_{m}\right) \geqq G\left(z, z_{0}, D^{*}\right)$. Consider $G\left(z, z_{0}, \mathfrak{D}_{\infty}\right)$ and $G\left(z, z_{0}, \mathfrak{D}_{m}\right)$ in \mathfrak{D}_{m}. Then $G\left(z, z_{0}, \mathfrak{D}_{\infty}\right) \geqq G\left(z, z_{0}, \mathfrak{D}_{m}\right)=0$ on $\partial_{l} \mathfrak{D}_{m}$
and $M_{n} w\left(z, \Lambda_{n}, \mathfrak{D}_{m}\right) \geqq G\left(z, z_{0}, \mathfrak{\Re}\right) \geqq G\left(z, z_{0}, \mathfrak{D}_{\infty}\right) \geqq G\left(z, z_{0}, \mathfrak{D}_{m}\right)=0$ on $\sum_{m+1}^{\infty} \Lambda_{n}$ for any $z_{0} \in \Delta_{0}$. Hence by the maximum principle

$$
\begin{align*}
\sum_{m+1}^{\infty} M_{n} w\left(z, \Lambda_{n}, l \mathfrak{D}_{m}\right)+G\left(z, z_{0}, \mathfrak{D}_{m}\right) & \geqq G\left(z, z_{0}, \mathfrak{D}_{\infty}\right) \\
& \geqq G\left(z, z_{0}, l \mathfrak{D}_{m}\right) \text { in } \mathfrak{D}_{m}: z_{0} \in \Delta_{0} . \tag{10}
\end{align*}
$$

Fig. 4
By (8) $\frac{1}{4^{n}} G\left(z, z_{0}, \mathfrak{D}_{m}\right) \geqq \frac{1}{4^{n}} G\left(z, z_{0}, D^{*}\right) \geqq M_{n} w\left(z, \Lambda_{n}, D^{s_{n}}\right) \geqq M_{n} w(z$, $\left.\Lambda_{n}, \mathfrak{D}_{m}\right)$ on $\partial \Gamma_{n}$. On the other hand, $\frac{1}{4^{n}} G\left(z, z_{0}, \mathfrak{D}_{m}\right)=0=M_{n} w\left(z, \Lambda_{n}\right.$, $\left.\mathfrak{D}_{m}\right)$ on $\partial_{l} \mathfrak{D}_{m}-\Gamma_{n}$, whence by the maximum principle $\frac{1}{4^{n}} G\left(z, z_{0}, \mathfrak{D}_{m}\right)$ $\geqq M_{n} w\left(z, \Lambda_{n}, \mathfrak{D}_{m}\right)$ in $\mathfrak{D}_{m}-\Gamma_{n}$. Hence

$$
\begin{gather*}
\left(\sum_{m+1}^{\infty} \frac{1}{4^{n}} G\left(z, z_{0}, \mathfrak{D}_{\infty}\right) \geqq\right) \sum_{m+1}^{\infty} \frac{1}{4^{n}} G\left(z, z_{0}, l \mathfrak{D}_{m}\right) \geqq \sum_{m+1}^{\infty} M_{n} w\left(z, \Lambda_{n}, \mathfrak{D}_{m}\right) \\
\text { in } \mathfrak{D}_{m}-\sum_{m+1}^{\infty} \Gamma_{n}: z_{0} \in \Delta_{0} . \tag{11}
\end{gather*}
$$

Thus by (10) and (11) $\sum_{m+1}^{\infty} \frac{1}{4^{n}} G\left(z, z_{0},{ }_{l} \mathfrak{D}_{m}\right)+G\left(z, z_{0}, \mathfrak{D}_{m}\right) \geqq G\left(z, z_{0}\right.$, $\left.{ }_{\imath} \mathfrak{D}_{\infty}\right) \geqq G\left(z, z_{0}, \mathfrak{D}_{m}\right)$ in ${ }_{l} \mathfrak{D}_{m}-\sum_{m+1}^{\infty} \Gamma_{n}$. Now $\left\{p_{n}^{i}\right\} \in \mathfrak{D}_{m}-\sum_{m+1}^{\infty} \Gamma_{n}$. Put $\varepsilon_{m}=\sum_{m+1} \frac{{ }^{*}}{4^{*}}$. Then $\lim _{m} \varepsilon_{m}=0$. Hence $G\left(p_{n}^{i}, z_{0}, \mathfrak{D}_{\infty}\right)-G\left(p_{n}^{i}, z_{0}, \mathfrak{D}_{m}\right)<\varepsilon_{m} G\left(p_{n}^{i}, z_{0}, \mathfrak{D}_{m}\right)$ $\leqq \varepsilon_{m} G\left(p_{n}^{i}, z_{0},{ }_{l} \mathfrak{D}_{\infty}\right)$. Hence by Proposition 2 and by Lemma 6 we have the following proposition which is given in the following paper.

