102. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. II

By Sakuji Inoue
Faculty of Education, Kumamoto University
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1962)

Let $\left\{\lambda_{\nu}\right\}, S(\lambda), \Phi(\lambda)$, and $R(\lambda)$ be the same notations as those defined in the statement of Theorem 1 [3] respectively, and $\Psi(\lambda)$ the second principal part of $S(\lambda)$ in the case where all the accumulation points of $\left\{\lambda_{y}\right\}$ form an uncountable set.

Since, by Theorem 1,

$$
\frac{1}{2 \pi i} \int_{|\lambda|=\rho} \frac{S(\lambda)}{(\lambda-z)^{k+1}} d \lambda=\frac{R^{(k)}(z)}{k!} \quad(k=0,1,2,3 \cdots)
$$

for every point z in the interior of the circle $|\lambda|=\rho$ with $\sup _{\nu}\left|\lambda_{\nu}\right|$ $<\rho<\infty$, we obtain

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{S\left(\rho e^{i t}\right)}{\left(\rho e^{i t}\right)^{k}} d t=\frac{R^{(k)}(0)}{k!}
$$

Consequently $R(\lambda)$ is expansible, on the domain $\{\lambda:|\lambda|<\infty\}$, in terms of integrals concerning the given function $S(\lambda)$ itself.

In this paper I have mainly two purposes: one is to find the expressions of $\Phi(\lambda)$ and $\Psi(\lambda)$ in terms of integrals concerning $S(\lambda)$ itself respectively, the other is to establish the relation between the maximum-modulus of $S(\lambda)$ on the circle $|\lambda-c|=\rho_{1}$ containing $\left\{\lambda_{\nu}\right\}$ and all the accumulation points of $\left\{\lambda_{\nu}\right\}$ inside itself and that of $R(\lambda)$ on the circle $|\lambda-c|=\rho_{2}$ with $\rho_{2}<\rho_{1}$.

Theorem 4. If the set of all the accumulation points of $\left\{\lambda_{\nu}\right\}$ is uncountable, then the second principal part $\Psi(\lambda)$ of $S(\lambda)$ in Theorem 1 is expressible in the form

$$
\begin{align*}
\Psi\left(\frac{\rho e^{i \theta}}{\kappa}\right)= & \frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t \tag{1}\\
& -\frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \frac{e^{i t}}{e^{i t}-\kappa e^{i \theta}} d t-\sum_{\alpha=1}^{m} \sum_{\nu} c_{\alpha}^{(\nu)}\left(\frac{\rho e^{i \theta}}{\kappa}-\lambda_{\nu}\right)^{-\alpha}
\end{align*}
$$

for every κ with $0<\kappa<1$ and every ρ with $\sup \left|\lambda_{\nu}\right|<\rho<\infty$; and if, contrary to this, the set of all the accumulation points of $\left\{\lambda_{\nu}\right\}$ is countable, then

$$
\begin{align*}
\sum_{\alpha=1}^{m} \sum_{\nu} c_{\alpha}^{(\nu)}\left(\frac{\rho e^{i \theta}}{\kappa}-\lambda_{\nu}\right)^{-\alpha} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t \tag{2}\\
& -\frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \frac{e^{i t}}{e^{i t}-\kappa e^{i \theta}} d t
\end{align*}
$$

for such κ, ρ as above.
Proof. It first follows from Theorem 1 that for every point z on the domain $\{z:|z|<\rho\}$ with $\sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty$

$$
\begin{align*}
R(z) & =\frac{1}{2 \pi i} \int_{|\lambda|=\rho} \frac{S(\lambda)}{\lambda-z} d \lambda \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{S(\lambda) \lambda}{\lambda-z} d t \quad\left(\lambda=\rho e^{i t}\right) \\
& =\frac{1}{4 \pi} \int_{0}^{2 \pi} S(\lambda)\left[1+\frac{\lambda+z}{\lambda-z}\right] d t \\
& =\frac{1}{4 \pi i} \int_{|\lambda|=\rho} \frac{S(\lambda)}{\lambda} d \lambda+\frac{1}{4 \pi} \int_{0}^{2 \pi} S(\lambda) \frac{\lambda+z}{\lambda-z} d t \\
& =\frac{1}{2} R(0)+\frac{1}{4 \pi} \int_{0}^{2 \pi} S(\lambda) \frac{\lambda+z}{\lambda-z} d t, \tag{3}
\end{align*}
$$

where the curvilinear integrations are taken in the counterclockwise direction.

Suppose now that all the accumulation points of $\left\{\lambda_{\nu}\right\}$ form an uncountable set. Then the second principal part $\Psi(\lambda)$ of the given function $S(\lambda)$ never vanishes, as we already pointed out in the earlier discussion. If we put $z=r e^{i \theta}$ for the above z, the point $\frac{\lambda \bar{\lambda}}{\bar{z}}=\frac{\rho^{2}}{r} e^{i \theta}$ lies outside the circle $|\lambda|=\rho$. Hence, as can be found immediately from Lemma [3] proved in the earlier discussion,

$$
\begin{aligned}
-\left\{\Phi\left(\frac{\lambda \bar{\lambda}}{\bar{z}}\right)+\Psi\left(\frac{\lambda \bar{\lambda}}{\bar{z}}\right)\right\} & =\frac{1}{2 \pi i} \int_{|\lambda|=\rho} S(\lambda)\left(\lambda-\frac{\lambda \bar{\lambda}}{\bar{z}}\right)^{-1} d \lambda \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} S(\lambda) \frac{\bar{z}}{\bar{z}-\bar{\lambda}} d t \quad\left(\lambda=\rho e^{i t}\right) \\
& =\frac{1}{4 \pi} \int_{0}^{2 \pi} S(\lambda)\left[1-\frac{\bar{\lambda}+\bar{z}}{\bar{\lambda}-\bar{z}}\right] d t \\
& =\frac{1}{4 \pi i} \int_{|\lambda|=\rho} \frac{S(\lambda)}{\lambda} d \lambda-\frac{1}{4 \pi} \int_{0}^{2 \pi} S(\lambda) \frac{\bar{\lambda}+\bar{z}}{\bar{\lambda}-\bar{z}} d t \\
& =\frac{1}{2} R(0)-\frac{1}{4 \pi} \int_{0}^{2 \pi} S(\lambda) \frac{\bar{\lambda}+\bar{z}}{\bar{\lambda}-\bar{z}} d t
\end{aligned}
$$

so that

$$
\begin{equation*}
\Phi\left(\frac{\lambda \bar{\lambda}}{\bar{z}}\right)+\Psi\left(\frac{\lambda \bar{\lambda}}{\bar{z}}\right)+\frac{1}{2} R(0)=\frac{1}{4 \pi} \int_{0}^{2 \pi} S(\lambda) \frac{\bar{\lambda}+\bar{z}}{\bar{\lambda}-\bar{z}} d t . \tag{4}
\end{equation*}
$$

Adding the equalities (3) and (4) term by term, we have

$$
\begin{equation*}
\Phi\left(\frac{\lambda \bar{\lambda}}{\bar{z}}\right)+\Psi\left(\frac{\lambda \bar{\lambda}}{\bar{z}}\right)+R(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} S(\lambda) \Re\left[\frac{\lambda+z}{\lambda-z}\right] d t \tag{5}
\end{equation*}
$$

Remembering that

$$
\Phi(\lambda)=\sum_{\alpha=1}^{m} \sum_{\nu} \frac{c_{\alpha}^{(\nu)}}{\left(\lambda-\lambda_{\nu}\right)^{\alpha}},
$$

we obtain therefore

$$
\begin{aligned}
\Psi\left(\frac{\rho^{2}}{r} e^{i \theta}\right)= & \frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \frac{\rho^{2}-r^{2}}{\rho^{2}+r^{2}-2 \rho r \cos (\theta-t)} d t \\
& -\frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \frac{\rho e^{i t}}{\rho e^{i t}-r e^{i \theta}} d t-\sum_{\alpha=1}^{m} \sum_{\nu} c_{\alpha}^{(\nu)}\left(\frac{\rho^{2}}{r} e^{i \theta}-\lambda_{\nu}\right)^{-\alpha}
\end{aligned}
$$

which shows that the desired equality (1) holds for every κ with $0<\kappa<1$ and every ρ with $\sup \left|\lambda_{\nu}\right|<\rho<\infty$.

Suppose next that all the accumulation points of $\left\{\lambda_{\nu}\right\}$ form a countable set. Then, as pointed out in the earlier discussion, $\Psi(\lambda)$ vanishes, and hence the desired equality (2) is deduced immediately from (1).

Corollary 1. If, in Theorem 4, there exist a positive number σ with $\sup _{\nu}\left|\lambda_{\nu}\right|<\sigma<\infty$ and countably infinite points $r_{j} e^{i \theta_{j}}$ with $\sup _{j} r_{j}<\sigma$ such that

$$
\int_{0}^{2 \pi} \frac{S\left(\sigma e^{i t}\right)}{\sigma e^{i t}-r_{j} e^{i \theta_{j}}} d t=0 \quad(j=1,2,3, \cdots)
$$

then

$$
\begin{align*}
& S\left(\frac{\rho e^{i \theta}}{\kappa}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t \tag{6}\\
&\left(0<\kappa<1, \sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty\right)
\end{align*}
$$

where the complex Poisson integral of S on the right-hand side converges uniformly to $R(0)$ or to $S\left(\rho e^{i \theta}\right)$ according as κ tends to zero or to unity.

Proof. By hypothesis, it is a matter of simple manipulations to show that

$$
\frac{1}{2 \pi i} \int_{|\lambda|=\sigma} \frac{S(\lambda)}{\lambda-z_{j}} d \lambda=\frac{1}{2 \pi i} \int_{|\lambda|=\sigma} \frac{S(\lambda)}{\lambda} d \lambda \quad\left(z_{j}=r_{j} e^{i \theta_{j}}, j=1,2,3\right) .
$$

Accordingly we have $R\left(z_{j}\right)=R(0), j=1,2,3, \cdots$. In addition to it, $R(z)$ is regular on the domain $\{z:|z|<\infty\}$. As a result, $R(z)$ is a constant on the entire complex plane. Since, moreover, the equality (5) is rewritten in the form

$$
\begin{aligned}
S\left(\frac{\lambda \bar{\lambda}}{\bar{z}}\right)-R\left(\frac{\lambda \bar{\lambda}}{\bar{z}}\right)+ & R(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} S(\lambda) \Re\left[\frac{\lambda+z}{\lambda-z}\right] d t \\
& \left(\lambda=\rho e^{i t}, z=r e^{i \theta}, r<\rho, \sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty\right),
\end{aligned}
$$

the desired equality (6) holds surely for every positive κ less than unity.

Next, from the relations

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) d t=\frac{1}{2 \pi i} \int_{|\lambda|=\rho} \frac{S(\lambda)}{\lambda} d \lambda=R(0)
$$

and the boundedness of $S(\lambda)$ on the circle $|\lambda|=\rho$, it is at once obvious that the complex Poisson integral on the right-hand side of (6) converges uniformly to $R(0)$ as κ tends to zero.

Since, furthermore, $S(\lambda)$ is regular on the circle $|\lambda|=\rho$ with $\sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty$, the real and imaginary parts of $S\left(\rho e^{i t}\right)$ both are continuous as well as bounded on it and hence the Poisson integrals

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \Re\left[S\left(\rho e^{i t}\right)\right] \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t
$$

and

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \Im\left[S\left(\rho e^{i t}\right)\right] \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t
$$

converge uniformly to $\mathfrak{K}\left[S\left(\rho e^{i \theta}\right)\right]$ and $\mathfrak{F}\left[S\left(\rho e^{i \theta}\right)\right]$ respectively as κ tends to unity, as can be easily verified with the aid of very small modifications of H. A. Schwarz's theorem [1] for Poisson's integral. This result shows that the complex Poisson integral on the righthand side of (6) converges uniformly to $S\left(\rho e^{i \theta}\right)$ as κ tends to unity.

The corollary has thus been proved.
Remark. This corollary is valid, of course, for the case where $\Psi(\lambda)$ vanishes.

Corollary 2. Let the hypothesis of Corollary 1 be satisfied, and let $M_{S}(\rho, 0)$ denote the maximum of the modulus $|S(\lambda)|$ of $S(\lambda)$ on the circle $|\lambda|=\rho$ with $\sup \left|\lambda_{\nu}\right|<\rho<\infty$. Then $M_{S}\left(\rho^{\prime}, 0\right)<M_{S}(\rho, 0)$ for any ρ^{\prime} greater than ρ.

Proof. Since $S(\lambda)$ is regular on any closed annular domain $\left\{\lambda: \rho \leqq|\lambda| \leqq \rho^{\prime}\right\}$ with $\sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\rho^{\prime}<\infty$ and since

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t=1,
$$

the present corollary is an obvious consequence of the maximummodulus principle and Corollary 1.

Theorem 5. Let $\left\{\lambda_{\nu}\right\}, S(\lambda)$, and $R(\lambda)$ be the same notations as those in Theorem 1 respectively; let $c(\neq \infty)$ be an arbitrarily given point on the complex plane; let C_{1} be any positively oriented circle with center c and radius ρ_{1} such that it contains $\left\{\lambda_{2}\right\}$ and all the accumulation points of $\left\{\lambda_{\nu}\right\}$ inside itself; let C_{2} be any positively oriented circle with center c and radius ρ_{2} less than ρ_{1}; let $M_{s}\left(\rho_{1}, c\right)$ $=\max _{\lambda \in O_{1}}|S(\lambda)|$; and let $M_{R}\left(\rho_{2}, \mathrm{c}\right)=\max _{\lambda \in C_{2}}|R(\lambda)|$. Then

$$
M_{R}\left(\rho_{2}, c\right)<\frac{\rho_{1} M_{S}\left(\rho_{1}, c\right)}{\rho_{1}-\rho_{2}} .
$$

Proof. Since $R(\lambda)$ is regular on the domain $\{\lambda:|\lambda-c|<\infty\}$, we
have

$$
R(z)=\sum_{n=0}^{\infty} \frac{R^{(n)}(c)}{n!}(z-c)^{n} \quad\left(z \in C_{2}\right)
$$

where

$$
\frac{R^{(n)}(c)}{n!}=\frac{1}{2 \pi i} \int_{\sigma_{1}} \frac{S(\lambda)}{(\lambda-c)^{n+1}} d \lambda
$$

Since, moreover, the last equality yields

$$
\frac{\left|R^{(n)}(c)\right|}{n!}=\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} \frac{S\left(\rho_{1} e^{i t}+c\right)}{\rho_{1}^{n} e^{i n t}} d t\right| \leqq \frac{M_{S}\left(\rho_{1}, c\right)}{\rho_{1}^{n}}
$$

where the equality sign in the last relation applies if and only if the function $S\left(\rho_{1} e^{i t}+c\right) / \rho_{1}^{n} e^{i n t}$ is a constant on the closed interval [$0,2 \pi$] of t [2], it is easily verified by direct computation that

$$
|R(z)|<\frac{\rho_{1} M_{S}\left(\rho_{1}, c\right)}{\rho_{1}-\rho_{2}}
$$

for every $z \in C_{2}$. In consequence, we obtain the inequality required in the statement of the present theorem, as we wished to prove.

References

[1] C. Carathéodory: Theory of functions of a complex variable Vol. I, New York, 146-149 (1954).
[2] -: Ibid., 114-116, 132.
[3] S. Inoue: Some applications of the functional-representations of normal operators in Hilbert spaces, Proc. Japan Acad., 38(6), 263-268 (1962).

