101. Open Basis and Continuous Mappings. II*)

By Sitiro HANAI

Osaka University of Liberal Arts and Education (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1962)

Let X and Y be T_1 -spaces and let f(X) = Y be a continuous mapping. f is said to be an S-mapping if the inverse image $f^{-1}(y)$ is separable¹⁾ for each point y of Y. By the open S-image, we mean the image of an open continuous S-mapping. V. I. Ponomarev [4] has recently obtained the following theorem: a T_1 -space X has a point-countable open base if and only if X is an open S-image of a 0-dimensional metric space.

In this note, we shall obtain an analogous theorem concernig the locally countable (star-countale) open base and we shall next investigate the open base of the inverse image space of an open continuous S-mapping.

1. We begin with proving the following theorem which is analogous to V. I. Ponomarev's theorem.

Theorem 1. A T_1 -space X has a locally countable (star-countable) open base if and only if X is an open S-image of a locally separable 0-dimensional metric space.

Proof. As the "if" part is easily seen from our previous note ([1], Theorem 10, Remark 3), we shall prove the "only if" part. Since it is easily verified that X has a star-countable open base if and only if X has a locally countable open base, we deal with the case of the star-countable open base. Let X have a star-countable open base $\mathfrak{A} = \{U_a\}$, then X is decomposed in such a way that $X = \bigcup_{r \in \Gamma} A_r, A_r = \bigcup \{U_a \in \mathfrak{A}_r\}, A_r \cap A_{\tau'} = \phi$ for $\gamma \neq \gamma', \gamma, \gamma' \in \Gamma$ where each \mathfrak{A}_r is a countable subfamily of \mathfrak{A} [2, 6]. Then each A_r has a countable open base \mathfrak{A}_r for each $\gamma \in \Gamma$. Let $\mathfrak{A}_r = \{U_n^{(r)} | n = 1, 2, \cdots\}$. For every point x of A_r $\{U_n^{(r)} | x \in U_n^{(r)}, U_n^{(r)} \in \mathfrak{A}_r\}$ is countable. Let us denote this collection by $\{U_{n_\ell(x)}^{(r)} | i = 1, 2, \cdots\}$, then, since X is a T_1 -space, we have $\bigcap_{i=1}^{\infty} U_{n_\ell(x)}^{(r)} = x$. If the intersection of all sets belonging to a countable subfamily $\{U_{n_\ell}^{(r)}\}$ of \mathfrak{A}_r is a single point, then we define $\xi = (n_1, n_2, \cdots)$. Now let B_r denote the set of all such ξ . We can define the topology

^{*)} This note is a continuation of our previous note [1].

¹⁾ A set A is said to be separable when there exists a countable subset B of A such that $\overline{B} \supset A$. By the definition due to V. I. Ponomarev, S-mapping means the continuous mapping such that the inverse image $f^{-1}(y)$ is perfectly separable for each point y of Y, but we define here in the weaker sense than this.

of B_r as a subspace of Baire's zero-space.²⁾ Then B_r is a separable 0-dimensional metric space. If $x \in A_r$ and $\bigcap_{i=1}^{\infty} U_{n_i}^{(r)} = x$, we define a mapping f_r of B_r onto A_r by $f_r(\xi) = x$ where $\xi = (n_1, n_2, \cdots)$. To prove that f_r is an open continuous mapping, it is sufficient to show that f_{τ} transforms the base for the neighborhood system of ξ to that of $f_r(\xi)$ for any point ξ of B_r . Let $V_n(\xi) = \left\{\xi' \mid \rho(\xi, \xi') < \frac{1}{n}, \xi' \in B_r\right\}$, then $\{V_n(\xi) \mid n=1, 2, \cdots\}$ is a base for the neighborhood system of ξ . Let $f_r(\xi) = x$ and let U(x) be any neighborhood of x where $\xi = (n_1, n_2 \cdots)$, then, since $\bigcap_{i=1}^{\infty} U_{n_i}^{(r)} = x$, we can find n_k such that $U_{n_k}^{(r)} \subset U(x)$. Then $f_r(V_{k+1}(\xi)) \subset U_{n_k}^{(r)} \subset U(x)$. Therefore f_r is an open continuous mapping of B_r onto A_r . Moreover, since B_r is separable, the inverse image $f_r^{-1}(x)$ is separable for every point x of A_r . Hence f_r is an open continuous S-mapping. For each $\gamma \in \Gamma$, let C_{γ} is a topological space such that C_r is homeomorphic to B_r and let $C_r \cap C_{r'} = \phi$ for $\gamma \neq \gamma'$. We define the topology of $T = \bigcup_{r \in \Gamma} C_r$ as follows: for each point t of T such that $t \in C_r$, the base for the open neighborhood system of t is that of t of the space C_r . Then T is a locally separable 0-dimensional metric space. Let φ_r be the above homeomorphism between C_r and B_r . We define a mapping f of T onto X as follows: if $t \in C_r$, then $f(t) = f_{\tau} \varphi_{\tau}(t)$. Then it is easy to see that f is an open continuous S-mapping of T onto X. This completes the proof.

As an immediate consequence of Theorem 1, we get the following corollary.

Corollary 1. A T_1 -space X is perfectly separable if and only if X is an open S-image of a separable 0-dimensional metric space.

2. In this section, we deal with the open basis of inverse image spaces of open continuous S-mappings.

Theorem 2. Let X be a topological space and let Y be a topological space with a locally countable (star-countable) open base. If f(X)=Y is an open continuous S-mapping, then X has a locally countable (star-countable) open base if and only if X has a point-countable open base.

Proof. As the "only if" part is obvious, we shall prove the "if" part. By the same argument as that of Theorem 1, we can decompose Y in such a way that $Y = \bigcup_{r \in F} A_r$ where $A_r \cap A_{r'} = \phi$ for $\gamma \neq \gamma'$

²⁾ Let B be the set of all points x such that $x = (n_1, n_2, n_3, \cdots)$ where each n_i is a positive integer. Let $x = (n_1, n_2, n_3, \cdots)$ and $y = (m_1, m_2, m_3, \cdots)$ be any points of B. If $n_i = m_i$ for i < k and $n_k \neq m_k$, then we define the metric $\rho(x, y) = \frac{1}{k}$. When we define $\rho(x, y)$ for any two points x and y of B, B is said to be Baire's zero-space.

S. HANAI

and each A_r is perfectly separable open subspace of Y. Since f is an open continuous S-mapping, each $f^{-1}(A_r)$ is separable ([8], Lemma 2). Then, since X has a point-countable open base, each $f^{-1}(A_r)$ is perfectly separable. Since $X = \bigcup_{r \in T} f^{-1}(A_r)$ and $f^{-1}(A_r) \cap f^{-1}(A_{r'}) = \phi$ for $r \neq r'$, X has a star-countable open base. This completes the proof.

Corollary 2. A topological space X has a locally countable (starcountable) open base if and only if the product space $X \times Y$ has a locally countable (star-countable) open base for any topological space Y with a locally countable (star-countable) open base.

Proof. As the "if" part is obvious, we need only prove the "only if" part. Since X has a star-countable open base, X is decomposed in such a way that $X = \bigcup_{\tau \in \Gamma} A_{\tau}$ and $A_{\tau} \cap A_{\tau'} = \phi$ for $\tau \neq \tau'$ and each A_{τ} is a perfectly separable open subspace of X. Then $X \times Y = (\bigcup_{\tau \in \Gamma} A_{\tau})$ $\times Y = \bigcup_{\tau \in \Gamma} (A_{\tau} \times Y)$ and $(A_{\tau} \times Y) \cap (A_{\tau'} \times Y) = \phi$ for $\tau \neq \tau'$. Let f_{τ} be the projection of $A_{\tau} \times Y$ onto Y, then it is easy to see that f_{τ} is an open continuous S-mapping. Then, by virtue of Theorem 2, $A_{\tau} \times Y$ has a star-countable open base. Therefore $X \times Y$ has a star-countable open base. This completes the proof.

Theorem 3. Let X be a regular T_1 -space and let Y be a locally separable metric space. If f(X) = Y is an open continuous S-mapping, then X is a locally separable metric space if and only if X has a point-countable open base.

Proof. As the "only if" part is obvious, we need only prove the "if" part. Since Y is a locally separable metric space, Y has a star-countable open base. Then, by virtue of Theorem 2, X has a star-countable open base. Therefore X is locally separable and locally metrizable. Since X has a star-countable open base, X is strongly paracompact. Hence X is metrizable by Nagata-Smirnov's theorem [3, 5]. This completes the proof.

As an immediate result of Theorem 3, we get the following theorem which includes the well-known theorem due to A. H. Stone ([8], Theorem 4).

Theorem 4. Let X be a regular T_1 -space with a point-countable open base and let Y be a regular T_1 -space. If f(X) = Y is an open continuous S-mapping, then Y is a locally separable metric space if and only if X is a locally separable metric space.

In conclusion, we shall give an example which shows that we can not drop the assumption that X has a point-countable open base in Theorems 2, 3, and 4.

Example. Let X=[0,1] that is, the closed interval of the real line. We define the topology of X as follows: if $x \neq 1$ and $x \in X$,

then the collection of all semi-open intervals of the form [x, y) with $x < y \leq 1$ is the base for the neighborhood system of x and if x=1, then the single point x is itself open (cf. [7]). It is easy to see that X is a separable normal T_1 -space but not perfectly separable. Hence X is not metrizable. Therefore X has no point-countable open base. Now let Y=[0,1] be the subspace of the real line, then Y is a separable metric space and hence Y has a star-countable open base. Let f be the projection of $X \times Y$ onto Y, then f is an open continuons S-mapping. On the other hand, it is easy to see that $X \times Y$ has no point-countable open base. In fact, suppose on the contrary that $X \times Y$ has a point-countable open base. Then, since $X \times Y$ is separable, $X \times Y$ is perfectly separable. Hence X is perfectly separable. This contradicts the fact that X is not perfectly separable.

References

- S. Hanai: Open basis and continuous mappings, Proc. Japan Acad., 37, 524-529 (1961).
- [2] K. Morita: Star-finite coverings and the star-finite property, Math. Japonicae, 1, 60-68 (1948).
- [3] J. Nagata: On a necessary and sufficient condition of metrizability, Jour. Inst. Polytech. Osaka City Univ., ser. A, 1, 93-100 (1950).
- [4] V. I. Ponomarev: Axioms of countability and continuous mappings, Bull. Pol. Akad. Nauk, VIII, 127-134 (1960).
- [5] Yu. Smirnov: On metrization of topological spaces, Uspekhi Mathem. Nauk, 6, 100-111 (1951).
- [6] Yu. Smirnov: On strongly paracompact spaces, Izv. Akad. Nauk, SSSR, Ser. Mat., 20, 253-274 (1956).
- [7] R. H. Sorgenfrey: On the topological product of paracompact spaces, Bull. Amer. Math. Soc., 43, 631-632 (1947).
- [8] A. H. Stone: Metrizability of decomposition spaces, Proc. Amer. Math. Soc., 7, 690-700 (1956).