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1. Introduction. A. Dold and R. Thorn established in [1 the
existence of the following natural isomorphism

gq(X)zq(SP(X, o)), q >= 1,
for a connected CW-complex X with base point o, where SP(X, o)
denotes the infinite symmetric product of X. Professor K. Morita
conjectured that there exists a natural isomorphism

Hq(X; G)zq(SP(X, o); G), q_>_8,
for the homotopy groups with coefficients (in a finitely generated
abelian group G) in the sense of Katuta 2. In [_3 we have proved
that there exists the isomorphism above when X is a 1-connected
countable simplicial complex. Here we shall show that the conjecture
is true when X is a 1-connected CW-complex. The following theorem
which was obtained in our previous paper 4 will play an important
role in our proof.

Theorem 1. Let spaces EF, B C and a map p (E, F)
(B, C) be given. If p is a weak homotopy equivalence of pairs of
spaces, i.e. if p induces an isomorphism

p. z(E, F)z(B, C) for any nO,
then for a CW-complex K the induced map ’p’(EK, F)-->(BK, C)
is a weak homotopy equivalence of pairs of mapping spaces, i.e.
induces an isomorphism

’p. (EK, F)z(B, C) for any
where we mean a 1-1 correspondence by an isomorphism if
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2. Homotopy groups with coefficients. Throughout this paper
we consider only spaces with base point and maps carrying the base
point to the base point. Let G be a finitely generated abelian group.
Y. Katuta defined homotopy groups with coefficients in G, zq(X; G),
for q>__3 and each space X as follows. Let us consider S the unit
circle in the complex number plane with 1 as the base point and let
p,: S--->S be the map defined by p,(e)-e, for a positive integer

m. Let Pqm: Sq-’Sq be the (q--1)-fold suspension Sq-:tpmt) of Pro. Then

1) The suspension Sf:SX--SY of a map f:X--)Y is defined by Sf(s, x)=(s,f(x)) for
sS and xX, and the q-fold suspension of f by Sqf=S(Sq-f) (see also the foot note)).
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p is a map of degree m. We define a q-dimensional CW-complex
B,q>=2, by attaching a q-cell e-CS---S- to S- by the map
p-. As is well known, for a finitely generated abelian group G we
can write

r-fold

G--Z+...+Z+Zm,+...+Zms
where Z is an infinite cyclic group and Z,, l<=i<=s, is a finite cyclic
group of a prime power order m,. Then q-dimensional CW-complex
P(G, q), q>__ 2, is defined by

r-fold

P(G, q)-S v. v S v Bq,v VBq

If G is a free abelian group of rank r, we define P(G,O) as the
discrete space consisting of r+l points and P(G, 1) as Siv.. .vS1
(r-fold).

Notice that P(G, q), q >= 3, is a 1-connected space such that
Hq(P(G, q))zG and H(P(G, q))--O for i-q. Clearly P(G, q)-Sq-

P(G, 2)(-SqP(G, 0), when G is free).) Then for a space Xand q_>_3
(q_>_l when G is free) we have II(P(G, q); x)--II(Sq- P(G, 2); X)
II(Sq-; XP(,))-rq_2(XV(,)) (-rq(X’) when G is free) (cf. V4],
[5]), where II(K;X) denotes the set of homotopy classes of maps
KX. We define rq(X; G), q>=3, as II(P(G, q); X) which has a group
structure by the above 1-1 correspondence and call it the q-th homo-
topy group of X with coejftcients in G. Define u.(X; G) as a set
II(P(G, 2); X) (u0(X; G) as II(P(G, 0); X) when G is free). Obviously,
rq(X;Z) coincides with the ordinary q-th homotopy group rq(X).
Hereafter we shall not consider the case G is free. From the
definition q(X; G) is abelian for q=>4.

For a pair of spaces (X, A) and q__>3 we define rq(X,A;G)
II(CP(G, q-- 1), P(G, q-- 1); X, A). For q >__ 4 it has a group structure

and is called the q-th relative homotopy group of (X, A) with coe-
cients in G. It is abelian when q=>5. It is easily seen that if A
consists of the base point o of X, 7rq(X, o; G) may be identified with
rq(X; G). Now we have the exact sequence

-->rq(A;G)
i,

rq(X;G)
j* 3, ,rq(X, A; G) ,zc_(A; G)->...,

where i. and j. are induced by inclusions and 3 by a restriction in
the obvious way.

Theorem 2. If p’(E, F)->(B, b) is a weak homotopy equivalence,
then there exists the exact sequence

2) CX=IX=IX/(Ox X)-(Ix o), the cone over X.
3) SX=SIX=SlxX/(soXX)-(Sxo), the suspension of X. The q-foldsuspen-

sion of X is defined by Sqx=s(sq-Ix). Note that SqX=SgX, especially Sq=Sq-S
=Sq-lS1.
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--> a(F; G) i.,=(E; G)--P*- =(B; G) * =_ I(F; G) -....
Furthermore, the exact sequence is natural with respect to maps
f’(E,F)-->(EI, F1) and g’BB such that pf-gp, where p’(E,F)
(B, b) is another weak homotopy equivalence.

Proof. By Theorem 1 we have an isomorphism ’p." ,(EV, F)
z(B’), for n0 and P=P(G, 2). Now (EV, FV)--H(CS-,S-;
E, F) H(CS’- P(G, 2), S- P(G, 2); E, F) -H(CP(G, n+ 1), P(G,
n+l); E,F)--+(E,F; G) and similarly (Be) z z+(B; G). Since
these isomorphisms are natural (cf. [4, (2.3)), a map p." (E, F; G)
zq(B; G), q2, defined by p.[f-[pf for [fe=q(E,F; G) satisfies
O’p, p.0 and hence it is an isomorphism. If we set p.j.-p and
3p-3 in the exact sequence of the pair (E, F), we have the desired
sequence.

The second part of the theorem is easily verified by the defini-
tions of p and

The following proposition is proved in [2, Theorems 3.8 and
3.11 and in [3, (3.10).

Froposition 1. (The universal coecient theorem.) The follow-
ing sequence is exact:

O=(X)G ,(X;G)=_(X),G0, q3.

The exact sequence splits for q4 if G is Z, a finite cyclic group

of an odd prime order p, and it is natural with respect to each
map f:X Y.
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4) In [2] Y. Katuta proved the theorem if p is a fibering in the sense of Serre.
But we need the theorem in case p is not necessarily a fibering.

5) @ and denote the tensor and torsion products respectively. For the defini-
tions of and , see Theorem 3.8 in [2].


