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The present note is a continuation of our previous paper on the
cohomological dimension of paracompact spaces 12. In the previous
one we proved the following theorem"

Theorem 1. (Sum) Let X be a space and let {X} be a countable

collection of closed sets of X such as [JX-X. If each X has
-1

D(X; G) <__ n, then we have D(X; G) <= n.
Hence, we shall prove the sum theorems of the another forms.
All spaces will be assumed to be paracompact Hausdorff spaces

and all coefficient groups will be assumed to be non-zero additive
Abelian groups.

Let D(X;G) be the cohomological dimension with coefficient
group G defined as follows" D(X; G)<= n if and only if for any closed
set A of X and for any integer m such as m>=n the homomorphism
H(X; G)--->H’(A; G) induced by inclusion is onto where n is a non-

negative integer and H’(X; G), H’(A; G) are n-th Cech cohomology
groups with coefficient group G.

We state now for reference the following two theorems to be
used below.

Theorem 2. (Mayer-Vietoris) If X is a space and if X, X.
are closed sets of X such as X--X"X, then the following sequence
is exact

Hr’G)-+H(X-X2; G)--Hn+(X; G)-->.-->H(X;G)-->Hn(X;G) ,., ..
Theorem 3.) (Katetov) If X is a collectionwise normal Haus-

dorff space, then for each closed set S of X and for each locally
finite open covering {U} of S there exists a locally finite collection
{V} of open sets of X satisfying the following condition

C(S, {U}, {V})" [_J VS, V-,SU and the correspondence

V-U induces {V} S-{U}-[V}-{V}
where {U}-[V} denotes that {U} is similar to {V}.

1) Cf. [12, Theorem 3.2].
2) Cf. [12, Definition]. The cohomological dimension for compact spaces can be

seen in [:1] and [6].
3) Cf. [3:] and [5, p. 43].
4) Cf. [_7, Theorem 3.2].
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All notations which will be used below are the notations used
in [12].

Let F be a closed set of a space X. Let us define D(X,F;G)
as follows" D(X, F; G)_<n if and only if D(C; G)<__n for every closed
set C of X such as CX-F.

Theorem 4. Let X be a space and let F be a closed set of X.
Then we have D(X; G)-maz {D(F; G), D(X, F; G)}.6

Proof. Let max{D(F; G), D(X, F; G)}-n and let A be an arbi-
trary closed set of X. It is enough to show that an arbitrary
element e of Hm(A; G) (m >= n) can be extended to an element of
H(X; G). Note the following exact sequence by Theorem 2.

..-->Hm(AF; G)-->H(A; G) H(F; G)-->H(AF; G)->....
Let el--e[AF.7 Since D(F;G)<=n, el can be extended to e2

of H(F; G). Now by the exactness of the above sequence there is
an e3 in H(AF; G) such as e3]A--e. Let a be a locally finite open
covering of AF such that z is an m-cocycle of N(a)s and {z}9

=e. By Theorem 3 there exists a locally finite collection of open
sets of X satisfying the condition C(FA, , ). By the normality

of X there is an open set H such that FAcHcHB where B
--{UI U}. Note the following exact sequence by Theorem 2,

..-->Hm(X; G)->H(H; G) H(X-H; G)H(H H; G)-->....
Let e={i(AF, H)z} H--H. Since X--HX--F and hence

D(X--H; G)<=n, e can be extended to e5 of H(X--H; G). By the
exactness there is an e6 in Hm(X;G) such as e61H--{i(AF,
H).ir.zT}. Hence eslA--{i(AF, H)zT}lA=e. This means that
D(X; G)__<max {D(F; G), D(X, F; G)} completing the proof.

Using Theorem 1 and the above theorem, we have the follow-
ing corollary.

Corollary. If {X} is a countable closed covering of X such that

XX+ (k--l, 2,...), then D(X; G)=max {D(X+,X;G) where we
put Xo-

Let a be a point finite open covering of X and let x be an
arbitrary point of X. Let us denote by ord (x’a) the integer n such

5) We can see the definition of this form for dim in [10].
6) The theorem of this form for dim was proved in [10, Lemma 4].
7) el AF denotes the image of e by the homomorphism H(A; G)---H’(AF; G)

induced by inclusion (cf. [12]).
8) N() is the nerve of .
9) {z} denotes the element of H(A-F; G) containing Z (cf. [12]).

10) i(A-F, H) is the homomorphism of the cocycles of N() into cocycles of N(B)
induced by the correspondence --B in C(AF, , ) (cf. [12]).

11) A"F {U-(A’F) U}. ra,I’’ denotes the homomorphism of the co-
cycles of N() into the cocycles of N(B]A-F) induced by inclusion (cf. [12]).

12) The theorem of this form for dim was proved in [10, Lemma 4].
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that x is contained in at most n distinct elements of a.

Theorem 5. Let X be a space and let a----{U]2A} be a locally

finite open covering of X such that for each e D(U; G) <= n. Then
we have D(X; G) <= n.)

Proof. For each natural number k we denote by the collec-
tion of all subsets of A each of which are distinct k elements of A.

If we put T--{xlord(x’)--l], then T is a closed set of X.
Let --{F]} where F--TU such as --. Then is a
discrete collection) of closed sets of X. Since X is collectionwise
normal, there exists a collection fl-[Vle} of open sets of X
such that FV some U for each e, and the collection fl
--{Vle} is discrete. From D(V;G)<=)D(U;G)<=n we have

D( (_J VI; G)__< n.) Let V- (_J V. Then we have VT.
Now let us suppose that for each k--l, 2,..., 1--1 we have con-

structed T, , and V such that
(1)" T is a closed set of X,
(2)" --{Vlpe} is a collection of open sets of X such that

k

is discrete, and (.J VT,
k=l

and

(3)" V is an open set of X such as D(V’G)<=n.
Let T--{xlord (x" )<=l}. Then T is closed in X. Because, for

any point x of XT there exists an element of / and for this
p the neighborhood U of x is disjoint from T. So we have T
satisfying (I).

Next, we shall construct fit and prove that fl satisfies (2). Let

--{F]e} where F-T([JU)--JV for each e. Then
h=l

is a discrete collection of closed sets of X. To prove this fact we
divide three parts" (i) is locally finite, (ii) is a disjoint collec-
tion, and (iii) F is closed for each eO. If we note that F

U and { Ulpe} is locally finite in X, then we immediately

have (i). For any distinct two element , p’ of there is a o such
as 20 e , 20 ’ and from the construction of T we have FF,Tt
([’1 U)U0--. Therefore, we have (ii). Let x be an arbitrary

l--I --I

point of X--F (pe,). If x is contained in (.iV, then JV is a
h=l h----1

13) The theorem of this form with respect to dim was proved in [9, Theorem 2J
and we have the theorem with respect to Ind of totally normal space in [11, Theorem 5].

14) Discrete collection is the locally finite collection of mutually disjoint sets.
15) Cf. [12, Theorem 3.1J.
16) Cf. [12, Corollary 3.3].
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desirable neighborhood of x. Let us suppose that x is not contained

in LJ V. If x is contained in T, then there exists a ’et such as

x U. From xeF we get :’ and, therefore, there exists

a oe/ such as 0e’, 06. Since FUo-, Uo is a desirable

neighborhood of x. In Ithe case x [J V and xeTt there exist mu-
+1

tually distinct elements 2,..., / of A such as xU. Then

U is a desired neighborhoocl of x. Here, we get (i), (ii), and (iii)

for . Since X is collectionwise normal, there exists a collection

fl--[V]eO} of open sets of X such that FVV some U
for each eO and fl is discrete in X. Let V- [_J V. Then by the

-I -1 -1

assumption T_L_JV we get T(Tt--T_)([.JV)V"(L.J V)
&=l /=I /=I

and, hence we obtain (2).
Finally, we shall show (3)t. Since for each eOt, VU for

some 2ez/, we have D(V;G)<=ID(U;G)<=n. By (2) we have D(V;
=< [J G) =< n.
Since a is a locally finite open covering of X, we have X=

k=l

and, hence we have X=[JV. By Theorem 1 we obtain D(X;G)
k=l

_<_D([J V; G)__<n. This completes the proof.

Let X be a space. Now we define a local’) cohomological di-
mension loc D(X; G) as follows" Let loc D(X; G)n (n>=- 1) if and
only if for any point x of X there exists a neighborhood U of x

such as D(U; G)-< n.
Theorem 5. Let X be a space. Then we have D(X;G)=loc

D(X; ).
Proof. We can easily see loc D(X; G)_<_D(X; G). Conversely,

if we assume loc D(X; G)<=n, for each point x of X there exists a

neighborhood U of x such that D(U; G)<=n. Since X is paracom-
pact, we obtain an open covering of X satisfying the conditions of
Theorem 5. Hence we have D(X; G)<=loc D(X; G).

Using the above theorem we get the following theorem"
Theorem 7. Let X be a space and let {F 2 e A} be a locally

countable closed covering of X such that D(F; G) <=n jbr each 2 e A.

17) Local dimensions for dim and Ind were defined in [_4].
18) We have the theorem of this form with respect to dim [3, [3.3]], and for

paracompact totally normal space we have the theorem with respect to Ind in [3, [3.4]].
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Then we have D(X; G)<=n.
Proof. By the assumption of {FIeA} for any point of X there

exists a neighborhood Ux of x such that UF#- for only count-

able -, ,.... By Theorem 1 we obtain D(U; G)--D(J(UF);
k=l

G)-<_ n and hence we have loc D(X; G) <= n. By theorem 6 we have
D(X; G)--loc D(X; G)<_ n.

References

[ 1 ] P. Alexandroff: On the dimension of normal spaces, Proc. of the Royal Soc.
of London, 189, 11-39 (1947).

[ 2 ] H. Cohen" A cohomological definition of dimension for locally compact spaces,
Duke Math. Jour., 21(2), 209-222 (1954).

[ 3 C. H. Dowker" ech cohomology theory and the axioms. Annals of Math., 51(2),
218-292 (1950).

[ 4 ] ----: Local dimension of normal spaces, Quart. Jour.. Math., 2, 101-120 (1955).
[ 5 ] S. Eilemberg and N. Steenrod, Foundations of algebraic topology.
6 ] W. Hurewics and H. Wallman: Dimension Theory, Princeton (1941).

[ 7 ] M. Katetov: On expansion of locally finite coverings, Coll. Math., 6, 145-151
(1958).

[ 8 ] K. Morita" On the dimension of normal spaces. II, Jour. Math. Soc. Japan, 2,
16-33 (1950).

[ 9 J --: On spaces having the weak topology with respect to closed coverings,
Proc. Japan Acad., 29, 537-543 (1953).

[10] --: On closed mappings and dimension, Proc. Japan Acad., 32, 161-165 (1956).
[11] A. Okuyama: On spaces with some kinds of open coverings, Memoirs of the

Osaka Univ. of Liberal Arts and Education, Ser. B (10) 1-4 (1961).
[12] --: On cohomological dimension for paracompact spaces. I, Proc. Japan Acad.,

38, 489-494 (1962).


