144. On Cohomological Dimension for Paracompact Spaces. II

By Akihiro OKUYAMA

Osaka University of Liberal Arts and Education (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1962)

The present note is a continuation of our previous paper on the cohomological dimension of paracompact spaces [12]. In the previous one we proved the following theorem:

Theorem 1.¹⁾ (Sum) Let X be a space and let $\{X_k\}$ be a countable collection of closed sets of X such as $\bigcup_{k=1}^{\infty} X_k = X$. If each X_k has $D(X_k; G) \leq n$, then we have $D(X; G) \leq n$.

Hence, we shall prove the sum theorems of the another forms.

All spaces will be assumed to be paracompact Hausdorff spaces and all coefficient groups will be assumed to be non-zero additive Abelian groups.

Let $D(X; G)^{2^{\circ}}$ be the cohomological dimension with coefficient group G defined as follows: $D(X; G) \leq n$ if and only if for any closed set A of X and for any integer m such as $m \geq n$ the homomorphism $H^m(X; G) \rightarrow H^m(A; G)$ induced by inclusion is onto where n is a nonnegative integer and $H^m(X; G)$, $H^m(A; G)$ are n-th Čech cohomology groups with coefficient group G.

We state now for reference the following two theorems to be used below.

Theorem 2.³⁾ (Mayer-Vietoris) If X is a space and if X_1 , X_2 are closed sets of X such as $X = X_1 \smile X_2$, then the following sequence is exact

 $\cdots \to H^n(X;G) \to H^n(X_1;G) \times H^n(X_2;G) \to H^n(X_1 \cap X_2;G) \to H^{n+1}(X;G) \to \cdots$

Theorem 3.⁴⁾ (Katetov) If X is a collectionwise normal Hausdorff space, then for each closed set S of X and for each locally finite open covering $\{U_{\mathfrak{f}}\}$ of S there exists a locally finite collection $\{V_{\mathfrak{f}}\}$ of open sets of X satisfying the following condition

 $C(S, \{U_{\varepsilon}\}, \{V_{\varepsilon}\}): \bigcup V_{\varepsilon} \supset S, V_{\varepsilon} \cap S \subset U_{\varepsilon} \text{ and the correspondence}$

 $V_{\varepsilon} \leftrightarrow U_{\varepsilon} \text{ induces } \{V_{\varepsilon}\} | S \cong \{U_{\varepsilon}\} \cong \{V_{\varepsilon}\} \cong \{\overline{V}_{\varepsilon}\}$

where $\{U_{\varepsilon}\}\cong\{V_{\varepsilon}\}$ denotes that $\{U_{\varepsilon}\}$ is similar to $\{V_{\varepsilon}\}$.

1) Cf. [12, Theorem 3.2].

²⁾ Cf. [12, Definition]. The cohomological dimension for compact spaces can be seen in [1] and [6].

³⁾ Cf. [3] and [5, p. 43].

⁴⁾ Cf. [7, Theorem 3.2].

All notations which will be used below are the notations used in [12].

Let F be a closed set of a space X. Let us define D(X, F; G)as follows: $D(X, F; G) \leq n$ if and only if $D(C; G) \leq n$ for every closed set C of X such as $C \subset X - F$.⁵⁰

Theorem 4. Let X be a space and let F be a closed set of X. Then we have $D(X;G) = max \{D(F;G), D(X,F;G)\}^{6}$

Proof. Let $\max\{D(F;G), D(X, F; G)\} = n$ and let A be an arbitrary closed set of X. It is enough to show that an arbitrary element e of $H^m(A;G)$ $(m \ge n)$ can be extended to an element of $H^m(X;G)$. Note the following exact sequence by Theorem 2.

 $\cdots \to H^m(A \subseteq F; G) \to H^m(A; G) \times H^m(F; G) \to H^m(A \subseteq F; G) \to \cdots$

Let $e_1 = e | A_{\frown} F^{, 7}$ Since $D(F; G) \leq n$, e_1 can be extended to e_2 of $H^m(F; G)$. Now by the exactness of the above sequence there is an e_3 in $H^m(A^{\frown}F; G)$ such as $e_3 | A = e$. Let α be a locally finite open covering of $A^{\frown}F$ such that z_{α}^m is an *m*-cocycle of $N(\alpha)^{8^{\circ}}$ and $\{z_{\alpha}^m\}^{9^{\circ}}$ = e. By Theorem 3 there exists a locally finite collection β of open sets of X satisfying the condition $C(F^{\frown}A, \alpha, \beta)$. By the normality of X there is an open set H such that $F^{\frown}A \subset H \subset \overline{H} \subset B$ where B $= {}^{\frown} \{U | U \in \beta\}$. Note the following exact sequence by Theorem 2,

 $\cdots \to H^m(X;G) \to H^m(\overline{H};G) \times H^m(X-H;G) \to H^m(\overline{H}-H;G) \to \cdots$

Let $e_4 = \{i(A \ F, \overline{H})z_a^m\} | \overline{H} - H^{10}$ Since $X - H \subset X - F$ and hence $D(X - H; G) \leq n$, e_4 can be extended to e_5 of $H^m(X - H; G)$. By the exactness there is an e_6 in $H^m(X; G)$ such as $e_6 | H = \{i(A \ F, \overline{H})\pi_{\alpha,\beta|A \ F} z_a^m\}^{11}$ Hence $e_6 | A = \{i(A \ F, \overline{H}) z_a^m\} | A = e$. This means that $D(X; G) \leq \max \{D(F; G), D(X, F; G)\}$ completing the proof.

Using Theorem 1 and the above theorem, we have the following corollary.

Corollary. If $\{X_n\}$ is a countable closed covering of X such that $X_k \subset X_{k+1}$ $(k=1, 2, \cdots)$, then $D(X; G) = max \{D(X_{k+1}, X_k; G) \text{ where we put } X_0 = \phi^{.12}$

Let α be a point finite open covering of X and let x be an arbitrary point of X. Let us denote by $ord(x:\alpha)$ the integer n such

5) We can see the definition of this form for dim in [10].

6) The theorem of this form for dim was proved in [10, Lemma 4].

7) $e \mid A \frown F$ denotes the image of e by the homomorphism $H^m(A; G) \rightarrow H^m(A \frown F; G)$ induced by inclusion (cf. [12]).

8) $N(\alpha)$ is the nerve of α .

9) $\{z_{\alpha}^{m}\}$ denotes the element of $H^{m}(A \subseteq F; G)$ containing Z_{α}^{m} (cf. [12]).

10) $i(A \subseteq F, \overline{H})$ is the homomorphism of the cocycles of $N(\alpha)$ into cocycles of $N(\beta)$ induced by the correspondence $\alpha \cong \beta$ in $C(A \subseteq F, \alpha, \beta)$ (cf. [12]).

11) $\beta | A \smile F = \{U \frown (A \smile F) | U \in \beta\}$. $\pi_{\alpha,\beta|A \smile F}$ denotes the homomorphism of the cocycles of $N(\alpha)$ into the cocycles of $N(\beta | A \smile F)$ induced by inclusion (cf. [12]).

12) The theorem of this form for dim was proved in [10, Lemma 4].

656

No. 9] On Cohomological Dimension for Paracompact Spaces. II

that x is contained in at most n distinct elements of α .

Theorem 5. Let X be a space and let $\alpha = \{U_{\lambda} | \lambda \in \Lambda\}$ be a locally finite open covering of X such that for each $\lambda \in \Lambda$ $D(\overline{U}_{\lambda}; G) \leq n$. Then we have $D(X; G) \leq n$.¹³⁾

Proof. For each natural number k we denote by Φ_k the collection of all subsets of Λ each of which are distinct k elements of Λ .

If we put $T_1 = \{x \mid ord \ (x:\alpha) = 1\}$, then T_1 is a closed set of X. Let $\mathfrak{F}_1 = \{F_{\varphi}^1 \mid \varphi \in \Phi_1\}$ where $F_{\varphi}^1 = T_1 \cap U_{\lambda}$ such as $\varphi = \lambda$. Then \mathfrak{F}_1 is a discrete collection¹⁴ of closed sets of X. Since X is collectionwise normal, there exists a collection $\beta_1 = \{V_{\varphi}^1 \mid \varphi \in \Phi_1\}$ of open sets of X such that $F_{\varphi}^1 \subset V_{\varphi}^1 \subset$ some U_{λ} for each $\varphi \in \Phi_1$, and the collection $\overline{\beta}_1 = \{\overline{V}_{\varphi}^1 \mid \varphi \in \Phi_1\}$ is discrete. From $D(\overline{V}_{\varphi}^1; G) \leq 1^{5} D(\overline{U}_{\lambda}; G) \leq n$ we have $D(\bigcup_{\varphi \in \Phi_1} \overline{V}_{\varphi}^1; G) \leq n.^{16}$ Let $V^1 = \bigcup_{\varphi \in \Phi_1} V_{\varphi}^1$. Then we have $V^1 \supset T_1$.

Now let us suppose that for each $k=1, 2, \cdots, l-1$ we have constructed T_k , \mathfrak{F}_k , β_k and V^k such that

 $(1)_k$: T^k is a closed set of X,

 $(2)_k: \quad \beta_k = \{ V_{\varphi}^k | \varphi \in \Phi_k \} \text{ is a collection of open sets of } X \text{ such that} \\ \overline{\beta}_k \text{ is discrete, and } \bigcup_{k=1}^k V^k \supset T_k, \\ \dots d$

and

(3)_k: V^k is an open set of X such as $D(\overline{V}^k:G) \leq n$.

Let $T_i = \{x \mid ord \ (x:\alpha) \leq l\}$. Then T_i is closed in X. Because, for any point x of $X - T_i$ there exists an element φ of Φ_{i+1} and for this φ the neighborhood $\bigcap_{\substack{\lambda \in \varphi \\ x \in \varphi}} U_\lambda$ of x is disjoint from T_i . So we have T_i satisfying $(1)_i$.

Next, we shall construct β_i and prove that β_i satisfies $(2)_i$. Let $\mathfrak{F}_i = \{F_{\varphi}^i | \varphi \in \Phi_i\}$ where $F_{\varphi}^i = T_i \cap (\bigcup_{\lambda \in \varphi} U_{\lambda}) - \bigcup_{\lambda=1}^{i-1} V^h$ for each $\varphi \in \Phi_i$. Then \mathfrak{F}_i is a discrete collection of closed sets of X. To prove this fact we divide three parts: (i) \mathfrak{F}_i is locally finite, (ii) \mathfrak{F}_i is a disjoint collection, and (iii) F_{φ}^i is closed for each $\varphi \in \Phi_i$. If we note that $F_{\varphi}^i \cap \prod_{\lambda \in \varphi} U_{\lambda} | \varphi \in \Phi_i\}$ is locally finite in X, then we immediately have (i). For any distinct two element φ, φ' of Φ_i there is a λ_0 such as $\lambda_0 \in \varphi, \lambda_0 \notin \varphi'$ and from the construction of T_i we have $F_{\varphi}^i \cap F_{\varphi'}^i \cap T_i \cap (\bigcap_{\lambda \in \varphi'} U_{\lambda}) \cap U_{\lambda_0} = \phi$. Therefore, we have (ii). Let x be an arbitrary point of $X - F_{\varphi}^i$ ($\varphi \in \Phi_i$). If x is contained in $\bigcup_{\lambda=1}^{i-1} V^h$, then $\bigcup_{\lambda=1}^{i-1} V^h$ is a

¹³⁾ The theorem of this form with respect to dim was proved in [9, Theorem 2] and we have the theorem with respect to Ind of totally normal space in [11, Theorem 5].

¹⁴⁾ Discrete collection is the locally finite collection of mutually disjoint sets.

¹⁵⁾ Cf. [12, Theorem 3.1].

¹⁶⁾ Cf. [12, Corollary 3.3].

A. OKUYAMA

[Vol. 38,

desirable neighborhood of x. Let us suppose that x is not contained in $\bigcup_{\lambda=1}^{l-1} V^{\hbar}$. If x is contained in T_{l} , then there exists a $\varphi' \in \Phi_{l}$ such as $x \in \bigcap_{\lambda \in \varphi'} U_{\lambda}$. From $x \notin F_{\varphi}^{l}$ we get $\varphi \neq \varphi'$ and, therefore, there exists a $\lambda_{0} \in \Lambda$ such as $\lambda_{0} \in \varphi'$, $\lambda_{0} \notin \varphi$. Since $F_{\varphi}^{l} \subset U_{\lambda_{0}} = \phi$, $U_{\lambda_{0}}$ is a desirable neighborhood of x. In [the case $x \notin \bigcup_{h=1}^{l-1} V^{h}$ and $x \notin T_{l}$ there exist mutually distinct elements $\lambda_{1}, \dots, \lambda_{l+1}$ of Λ such as $x \in \bigcap_{h=1}^{l+1} U_{\lambda h}$. Then $\bigcap_{h=1}^{l+1} U_{\lambda h}$ is a desired neighborhood of x. Here, we get (i), (ii), and (iii) for \mathfrak{F}_{l} . Since X is collectionwise normal, there exists a collection $\beta_{l} = \{V_{\varphi}^{l} \mid \varphi \in \Phi_{l}\}$ of open sets of X such that $F_{\varphi}^{l} \subset V_{\varphi}^{l} \subset \overline{V}_{\varphi}^{l} \subset some U_{\lambda}$ for each $\varphi \in \Phi_{l}$ and $\overline{\beta}_{l}$ is discrete in X. Let $V^{l} = \bigcup_{x=1}^{l-1} V^{k}$. Then by the assumption $T_{l-1} \subset \bigcup_{k=1}^{l-1} V^{k}$ we get $T_{l} \subset (T_{l} - T_{l-1}) \subset (\bigcup_{k=1}^{l-1} V^{k}) \subset V^{l} \subset (\bigcup_{k=1}^{l-1} V^{k})$ and, hence we obtain (2)_l.

Finally, we shall show $(3)_{\iota}$. Since for each $\varphi \in \Phi_{\iota}$, $\overline{V}_{\varphi}^{\iota} \subset \overline{U}_{\lambda}$ for some $\lambda \in \Lambda$, we have $D(\overline{V}_{\varphi}^{\iota}; G) \leq {}^{15}D(\overline{U}_{\lambda}; G) \leq n$. By (2)_{ι} we have $D(\overline{V}^{\iota}; G) \leq {}^{16}D(\bigcup_{\varphi \in \Phi_{\iota}} \overline{V}_{\varphi}^{\iota}; G) \leq n$.

Since α is a locally finite open covering of X, we have $X = \bigcup_{k=1}^{\infty} T_k$ and, hence we have $X = \bigcup_{k=1}^{\infty} V^k$. By Theorem 1 we obtain $D(X;G) \leq D(\bigcup_{k=1}^{\infty} \overline{V}^k;G) \leq n$. This completes the proof.

Let X be a space. Now we define a local¹⁷⁾ cohomological dimension loc D(X;G) as follows: Let loc $D(X;G) \leq n$ $(n \geq -1)$ if and only if for any point x of X there exists a neighborhood U_x of x such as $D(\overline{U}_x;G) \leq n$.

Theorem 6. Let X be a space. Then we have D(X;G) = loc D(X;G).¹⁸⁾

Proof. We can easily see $loc D(X;G) \leq D(X;G)$.¹⁵⁾ Conversely, if we assume $loc D(X;G) \leq n$, for each point x of X there exists a neighborhood U_x of x such that $D(\overline{U}_x;G) \leq n$. Since X is paracompact, we obtain an open covering of X satisfying the conditions of Theorem 5. Hence we have $D(X;G) \leq loc D(X;G)$.

Using the above theorem we get the following theorem:

Theorem 7. Let X be a space and let $\{F_{\lambda} | \lambda \in \Lambda\}$ be a locally countable closed covering of X such that $D(F_{\lambda}; G) \leq n$ for each $\lambda \in \Lambda$.

¹⁷⁾ Local dimensions for dim and Ind were defined in [4].

¹⁸⁾ We have the theorem of this form with respect to dim [3, [3.3]], and for paracompact totally normal space we have the theorem with respect to Ind in [3, [3.4]].

Then we have $D(X;G) \leq n$.

Proof. By the assumption of $\{F_{\lambda} | \lambda \in A\}$ for any point of X there exists a neighborhood U_x of x such that $\overline{U}_x \cap F_{\lambda} \neq \phi$ for only countable $\lambda = \lambda_1, \lambda_2, \cdots$. By Theorem 1 we obtain $D(\overline{U}_x; G) = D(\bigcup_{k=1}^{\infty} (\overline{U}_x \cap F_{\lambda k}); G) \leq n$ and hence we have $loc D(X; G) \leq n$. By theorem 6 we have $D(X; G) = loc D(X; G) \leq n$.

References

- P. Alexandroff: On the dimension of normal spaces, Proc. of the Royal Soc. of London, 189, 11-39 (1947).
- [2] H. Cohen: A cohomological definition of dimension for locally compact spaces, Duke Math. Jour., 21(2), 209-222 (1954).
- [3] C. H. Dowker: Čech cohomology theory and the axioms. Annals of Math., 51(2), 218-292 (1950).
- [4] ----: Local dimension of normal spaces, Quart. Jour. Math., 2, 101-120 (1955).
- [5] S. Eilemberg and N. Steenrod, Foundations of algebraic topology.
- [6] W. Hurewics and H. Wallman: Dimension Theory, Princeton (1941).
- [7] M. Katetov: On expansion of locally finite coverings, Coll. Math., 6, 145-151 (1958).
- [8] K. Morita: On the dimension of normal spaces. II, Jour. Math. Soc. Japan, 2, 16-33 (1950).
- [9] —: On spaces having the weak topology with respect to closed coverings, Proc. Japan Acad., 29, 537-543 (1953).
- [10] ----: On closed mappings and dimension, Proc. Japan Acad., 32, 161-165 (1956).
- [11] A. Okuyama: On spaces with some kinds of open coverings, Memoirs of the Osaka Univ. of Liberal Arts and Education, Ser. B (10) 1-4 (1961).
- [12] —: On cohomological dimension for paracompact spaces. I, Proc. Japan Acad., 38, 489-494 (1962).