141. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. III

By Sakuji Inoue
Faculty of Education, Kumamoto University
(Comm. by K. Kunugi, m.J.A., Nov. 12, 1962)

In this paper we shall turn to the problem of finding the extended Fourier-series expansion corresponding to each of the functions $S(\lambda)$, $\Phi(\lambda), \Psi(\lambda)$, and $R(\lambda)$ defined in the statement of Theorem 1 [cf. Vol. 38, No. 6 (1962), pp. 263-268].

Theorem 6. Let $\left\{\lambda_{y}\right\}, S(\lambda)$, and $R(\lambda)$ be the same notations as those in Theorem 1 respectively. Then, for every ρ with $\sup _{\nu}\left|\lambda_{\nu}\right|<$ $\rho<\infty$ and every κ with $0 \leqq \kappa<\infty$,

$$
\begin{equation*}
R\left(\kappa \rho e^{i \theta}\right)=\frac{a_{0}}{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}-i b_{n}\right)\left(\kappa e^{i \theta}\right)^{n} \quad(\theta: \text { variable }) \tag{7}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \cos n t d t \tag{8}\\
b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \sin n t d t
\end{array} \quad(n=0,1,2,3, \cdots)\right.
$$

and the series on the right-hand side converges absolutely and uniformly.

Proof. It follows from Theorem 1 that

$$
\begin{aligned}
\frac{1}{2}\left(a_{n}-i b_{n}\right) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) e^{-i n t} d t \quad(n=0,1,2,3, \cdots) \\
& =\frac{1}{2 \pi i} \int_{|\lambda|=\rho} \frac{S(\lambda) \rho^{n}}{\lambda^{n+1}} d \lambda \\
& =\frac{R^{(n)}(0) \rho^{n}}{n!}
\end{aligned}
$$

where 0 ! and $R^{(0)}(0)$ denote 1 and $R(0)$ respectively, so that

$$
\begin{aligned}
\frac{a_{0}}{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}-i b_{n}\right)\left(\kappa e^{i \theta}\right)^{n} & =\sum_{n=0}^{\infty} \frac{R^{(n)}(0)}{n!}\left(\kappa \rho e^{i \theta}\right)^{n} \quad(0 \leqq \kappa<\infty) \\
& =R\left(\kappa \rho e^{i \theta}\right) .
\end{aligned}
$$

In addition, the absolute and uniform convergence of the series on the right-hand side of (7) is a direct consequence of the hypothesis that $R(\lambda)$ is regular on the domain $\{\lambda:|\lambda|<\infty\}$.

Theorem 7. Let $\left\{\lambda_{4}\right\}, S(\lambda)$, and $R(\lambda)$ be the same notations as before. Then, for every ρ with $\sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty$ and every κ with $0<\kappa<1$,

$$
\begin{equation*}
S\left(\frac{\rho e^{i \theta}}{\kappa}\right)=\frac{a_{0}}{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}-i b_{n}\right)\left(\frac{e^{i \theta}}{\kappa}\right)^{n}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}+i b_{n}\right)\left(\frac{\kappa}{e^{i \theta}}\right)^{n}, \tag{9}
\end{equation*}
$$

where a_{n} and b_{n} are given by (8) and the two series on the righthand side both converge absolutely and uniformly.

Proof. As already demonstrated in my preceding paper, the equality

$$
\begin{equation*}
S\left(\frac{\rho e^{i t}}{\kappa}\right)-R\left(\frac{\rho e^{i \theta}}{\kappa}\right)+R\left(\kappa \rho e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t \tag{10}
\end{equation*}
$$

holds for every ρ with $\sup \left|\lambda_{\nu}\right|<\rho<\infty$ and every κ with $0<\kappa<1$. Moreover, in the same manner as that for the real Poisson integral, we can find that the complex Poisson integral on the right-hand side of (10) is expansible in the form

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \kappa^{n}\left(a_{n} \operatorname{con} n \theta+b_{n} \sin n \theta\right)
$$

where a_{n} and b_{n} are given by (8). By applying this result and Theorem 6 to (10) we have

$$
\begin{aligned}
S\left(\frac{\rho e^{i \theta}}{\kappa}\right)= & \frac{a_{0}}{2}+\sum_{n=1}^{\infty} \kappa^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}-i b_{n}\right)\left(\frac{e^{i \theta}}{\kappa}\right)^{n} \\
& -\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}-i b_{n}\right)\left(\kappa e^{i \theta}\right)^{n} \quad(0<\kappa<1),
\end{aligned}
$$

where the three series on the right-hand side converge absolutely and uniformly on account of the fact that the sets $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ both are bounded and that $\frac{1}{2}\left(a_{n}-i b_{n}\right)=R^{(n)}(0) \rho^{n} / n$! for $n=0,1,2,3, \cdots$; and by direct calculation it is easily found that the just established expansion of $S\left(\frac{\rho e^{i t}}{\kappa}\right)$ is rewritten in the form of the right-hand side of (9). Moreover it is clear that the last series on the right of (9) converges absolutely and uniformly for any κ with $0<\kappa<1$.

With these results the proof of the theorem is complete.
Theorem 8. Let $\left\{\lambda_{2}\right\}$ and $S(\lambda)$ be the same notations as before. If all the accumulation points of $\left\{\lambda_{v}\right\}$ form a countable set, then the first principal part $\Phi(\lambda)$ of $S(\lambda)$ is expansible in the form

$$
\Phi\left(\frac{\rho e^{i \theta}}{\kappa}\right)=\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}+i b_{n}\right)\left(\frac{\kappa}{e^{i \theta}}\right)^{n} \quad\left(0<\kappa<1, \sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty\right),
$$

where a_{n} and b_{n} are given by (8) and the series on the right-hand side converges absolutely and uniformly.

Proof. By the hypothesis on the set $\left\{\lambda_{v}\right\}$ we have

$$
\begin{aligned}
\Phi\left(\frac{\rho e^{i \theta}}{\kappa}\right) & =\sum_{\alpha=1}^{m} \sum_{\nu} e_{\alpha}^{(\alpha)}\left(\frac{\rho e^{i \theta}}{\kappa}-\lambda_{\nu}\right)^{-\alpha} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (\theta-t)} d t-R\left(\kappa \rho e^{i \theta}\right)
\end{aligned}
$$

$$
\left(0<\kappa<1, \sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty\right),
$$

as already shown in (2) of my preceding paper. Consequently it is found immediately from the course of the proof of Theorem 7 that

$$
\begin{aligned}
\Phi\left(\frac{\rho e^{i \theta}}{\kappa}\right) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \kappa^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)-\frac{a_{0}}{2}-\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}-i b_{n}\right)\left(\kappa e^{i \theta}\right)^{n} \\
& =\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}+i b_{n}\right)\left(\frac{\kappa}{e^{i \theta}}\right)^{n},
\end{aligned}
$$

where the series on the right of the final relation converges absolutely and uniformly.

Remark. If all the accumulation points of $\left\{\lambda_{\nu}\right\}$ form an uncountable set, the second principal part $\Psi(\lambda)$ is expansible in the form

$$
\begin{aligned}
& \Psi\left(\frac{\rho e^{i \theta}}{\kappa}\right)=\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}+i b_{n}\right)\left(\frac{\kappa}{e^{i \theta}}\right)^{n}-\sum_{\alpha=1}^{m} \sum_{\nu} c_{\alpha}^{(\nu)}\left(\frac{\rho e^{i \theta}}{\kappa}-\lambda_{\nu}\right)^{-\alpha} \\
&\left(0<\kappa<1, \sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty\right),
\end{aligned}
$$

as will be seen immediately from (1) in the preceding paper.
Theorem 9. Let $\left\{\lambda_{\nu}\right\}$ and $S(\lambda)$ be the same notations as those in Theorem 1 respectively. If there are a positive number σ with sup $\left|\lambda_{\nu}\right|<\sigma<\infty$ and a countably infinite set of points $r_{j} e^{i \theta_{j}}$ with $\sup _{j} r_{j}<\sigma$ such that

$$
\int_{0}^{2 \pi} \frac{S\left(\sigma e^{i t}\right)}{\sigma e^{i t}-r_{j} e^{i \theta_{j}}} d t=0 \quad(j=1,2,3, \cdots)
$$

then the relations

$$
\begin{aligned}
& \frac{1}{\pi} \int_{0}^{2 \pi} \Re\left[S\left(\rho e^{i t}\right)\right] \cos n t d t=-\frac{1}{\pi} \int_{0}^{2 \pi} \Im\left[S\left(\rho e^{i t}\right)\right] \sin n t d t, \\
& \frac{1}{\pi} \int_{0}^{2 \pi} \Re\left[S\left(\rho e^{i t}\right)\right] \sin n t d t=\frac{1}{\pi} \int_{0}^{2 \pi} \Im\left[S\left(\rho e^{i t}\right)\right] \cos n t d t
\end{aligned}
$$

hold for every positive integer n and every ρ with $\sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty$, and $S(\lambda)$ is expansible in the form

$$
S\left(\frac{\rho e^{i \theta}}{\kappa}\right)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n}\left(\frac{\kappa}{e^{i \theta}}\right)^{n} \quad(0<\kappa<1)
$$

where $a_{n}, n=0,1,2, \cdots$, are given by (8).
Proof. As already proved at the beginning of the proof of Corollary 1 in my preceding paper, it is found by hypothesis that the ordinary part $R(\lambda)$ of $S(\lambda)$ is a constant which will be denoted by C and hence that

$$
S\left(\frac{\rho e^{i t}}{\kappa}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i \varphi}\right) \frac{1-\kappa^{2}}{1+\kappa^{2}-2 \kappa \cos (t-\varphi)} d \varphi \quad\left(0<\kappa<1, \sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty\right)
$$

$$
\begin{equation*}
=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \kappa^{n}\left(a_{n} \cos n t+b_{n} \sin n t\right) \tag{11}
\end{equation*}
$$

where a_{n} and b_{n} are given by (8). Moreover, on the one hand,

$$
\begin{aligned}
C & =R(0) \\
& =\frac{1}{2 \pi i} \int_{|\lambda|=\rho} \frac{S(\lambda)}{\lambda} d \lambda \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(\rho e^{i t}\right) d t \\
& =-\frac{a_{0}}{2},
\end{aligned}
$$

and on the other hand,

$$
\begin{aligned}
C & =R(z) \quad\left(z=r e^{i \theta}, r<\rho, \kappa=\frac{r}{\rho}\right) \\
& =\frac{1}{2 \pi i} \int_{|\lambda|=\frac{\rho}{\kappa}} \frac{S(\lambda)}{\lambda-z} d \lambda \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{S\left(\frac{\rho e^{i t}}{\kappa}\right) \frac{\rho e^{i t}}{\kappa}}{\frac{\rho e^{i t}}{\kappa}-r e^{i \theta}} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{S\left(\frac{\rho e^{i t}}{\kappa}\right)}{1-\kappa^{2} e^{i(\theta-t)}} d t .
\end{aligned}
$$

By applying (11) and the just indicated relation $\frac{a_{0}}{2}=C$ to the final relation, we obtain

$$
\begin{aligned}
C= & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{C+\sum_{n=1}^{\infty} \kappa^{n}\left(a_{n} \cos n t+b_{n} \sin n t\right)\right\} \times \\
& \left\{1+\sum_{n=1}^{\infty}\left(\kappa^{2} e^{i \theta}\right)^{n}(\cos n t-i \sin n t)\right\} d t \\
= & C+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}-i b_{n}\right)\left(\kappa^{3} e^{i \theta}\right)^{n}
\end{aligned}
$$

and hence

$$
\sum_{n=1}^{\infty}\left(a_{n}-i b_{n}\right)\left(\kappa^{3} e^{i \vartheta}\right)^{n} \equiv 0 .
$$

If, for simplicity, we now make use of abbreviations

$$
\begin{aligned}
& A_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \mathfrak{R}\left[S\left(\rho e^{i t}\right)\right] \cos n t d t \\
& B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \Im\left[S\left(\rho e^{i t}\right)\right] \cos n t d t \\
& C_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \mathfrak{R}\left[S\left(\rho e^{i t}\right)\right] \sin n t d t \\
& D_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \Im\left[S\left(\rho e^{i t}\right)\right] \sin n t d t
\end{aligned}
$$

the just established identity is rewritten, as follows:

$$
\sum_{n=1}^{\infty} \kappa^{3 n}\left\{\left(A_{n}+D_{n}\right)+i\left(B_{n}-C_{n}\right)\right\}(\cos n \theta+i \sin n \theta) \equiv 0
$$

Accordingly the two identities

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \kappa^{3 n}\left\{\left(A_{n}+D_{n}\right) \cos n \theta-\left(B_{n}-C_{n}\right) \sin n \theta\right\} \equiv 0, \\
& \sum_{n=1}^{\infty} \kappa^{3 n}\left\{\left(A_{n}+D_{n}\right) \sin n \theta+\left(B_{n}-C_{n}\right) \cos n \theta\right\} \equiv 0
\end{aligned}
$$

hold for every κ with $0<\kappa<1$, so that

$$
\begin{aligned}
& \left(A_{n}+D_{n}\right) \cos n \theta \equiv\left(B_{n}-C_{n}\right) \sin n \theta, \\
& \left(A_{n}+D_{n}\right) \sin n \theta \equiv-\left(B_{n}-C_{n}\right) \cos n \theta
\end{aligned}
$$

for $n=1,2,3, \cdots$. From the final two systems of identities, it follows at once that $A_{n}=-D_{n}$ and $B_{n}=C_{n}$ for $\mathrm{n}=1,2,3, \cdots$, and hence that $a_{n}=i b_{n}$ for $n=1,2,3, \cdots$.

Furthermore we can easily find that an application of the system of relations $a_{n}=i b_{n}, n=1,2,3, \cdots$, to (11) yields the desired expansion of $S\left(\frac{\rho e^{i \theta}}{\kappa}\right)$.

The proof of the theorem has thus been finished.
Remark. It can be verified without difficulty that, if there are a positive number σ with $\sup \left|\lambda_{\nu}\right|<\sigma<\infty$ and a countably infinite set of points z_{j} with $\sup _{j}\left|z_{j}\right|<\sigma$ such that the integrals

$$
\int_{|\lambda|=o} \frac{S(\lambda)}{\left(\lambda-z_{j}\right)^{\mu+1}} d \lambda \quad(j=1,2,3, \cdots)
$$

assume the same value, not zero, then results analogous to those of Theorem 9 are established for the μ-th derivative $S^{(\mu)}(\lambda)$ on the domain $\left\{\lambda: \sup \left|\lambda_{\nu}\right|<|\lambda|<\infty\right\}$. The same is true of the case where there exists a positive number σ with $\sup \left|\lambda_{\nu}\right|<\sigma<\infty$ such that

$$
\int_{|\lambda|=\sigma} \frac{S(\lambda)}{\lambda^{\mu+1}} d \lambda \neq 0, \quad \int_{|\lambda|=\sigma} \frac{S(\lambda)}{\lambda^{\mu+p}} d \lambda=0 \quad(p=2,3,4, \cdots)
$$

In either case it turns out, in fact, that $R(\lambda)$ is a polynomial in λ of precisely the degree μ, the ordinary part of $S^{(\mu)}(\lambda)$ is given by $R^{(\mu)}(\lambda)$, and the set of non-regular points of $S^{(\mu)}(\lambda)$ consists of the set $\left\{\lambda_{\nu}\right\}$ and its accumulation points.

