134. On Generating Elements of Galois Extensions of Simple Rings

By Takasi NAGAHARA

Department of Mathematics, Okayama University, Okayama (Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1962)

If a simple ring R is Galois and finite over a simple subring S then R = S[u, v] with some conjugate u, v [6, Theorem 1]. In case R is a division ring we have seen that R = S[r] with some r if and only if R is commutative or S is not contained in the center C of R [2, Theorem 3]. The purpose of this paper is to prove that this fact is still valid for simple rings.

Throughout the present paper, R be always a simple ring (with minimum condition), and S a simple subring of R containing the identity element of R. And we shall use the following conventions: $R = \sum_{i=1}^{n} De_{ij}$, where e_{ij} 's are matrix units and $D = V_R(\{e_{ij}'s\})$ a division ring. And, C, Z and V are the center of R, the center of S and the centralizer $V_R(S)$ of S in R respectively. When R is Galois over S, we denote by \mathfrak{G} the Galois group of R/S. Finally, as to notations and terminologies used in this paper, we follow [4].

In what follows, we shall prove several preliminary lemmas, which will be needed exclusively for the proof of our principal result.

Lemma 1. Let R be Galois and finite over S. If R' is an intermediate ring of R/S such that R is R'-R-irreducible then R' is a simple ring.

Proof. By [3, Lemma 2], $(\sigma | R')R_r$ is $R'_r \cdot R_r$ -irreducible and canonically R_r -isomorphic to R_r for each $\sigma \in \mathfrak{G}$. Next, let $(\tau | R')R_r$ be $R'_r \cdot R_r$ -isomorphic to $(\sigma | R')R_r$ $(\sigma, \tau \in \mathfrak{G})$. If $\sigma | R' \leftrightarrow \tau v_r | R'$ under the isomorphism, then one will easily see that $v \in V$. Moreove, $(\tau v_r | R')R_r = (\tau | R')R_r$ yields at once vR = R. Hence, v is a regular element of R. Now, it will be easy to see that $\tau | R' = \sigma \tilde{v} | R'$. And, the converse is true as well. Finally, one may remark that $V_R(R')$ is a division ring. By the light of these facts, patterning after the proof of [4, Lemma 1.4], we can prove that R' is a simple ring. The details may be left to readers.

Lemma 2. If $e_{ii}R \cap S \neq 0$ $(i=1,\dots,n)$ then $S \supseteq \{e_{11},\dots,e_{nn}\}$.

Proof. Each $r_i = e_{ii}R \cap S$ is a non-zero right-ideal of S, and $r_1 + \cdots + r_n = r_1 \oplus \cdots \oplus r_n$. As the capacity of S never exceeds that of R, we obtain $r_1 + \cdots + r_n = S$. Hence, $e_{11} + \cdots + e_{nn} = 1 = a_1 + \cdots + a_n$ for some $a_i \in r_i$. Recalling here that $r_i \subseteq e_{ii}R$, it follows that $e_{ii} = a_i \in S$ $(i = 1, \dots, n)$.

T. NAGAHARA

Lemma 3. Let $=\sum_{i=1}^{n} e_{ii} c_{ii}$ be an element of R with $c_{1n} \neq 0$.

(i) Let n > 2. If $h \in D$ $k \neq 0 \in D$ are given, then there exists a regular element $r \in R$ such that $rbr^{-1} = \sum_{i=1}^{n} e_{ij}d_{ij}$, $d_{1n-1} = h$, $d_{1n} = k$ and $d_{in} = 0$ $(i = 2, \dots, n)$.

(ii) If n=2 and b is a regular element, then there exists a regular element $r \in R$ such that $rbr^{-1} = \sum_{i=1}^{2} e_{ij}d_{ij}$, $d_{12} \neq 0$, $d_{21} = 1$ and $d_{22} = 0$.

Proof. (i) Set $h'=c_{1n}^{-1}(h-c_{1n-1})$, $k'=c_{1n}^{-1}k$. And consider the following product r of elementary matrices:

 $r = (\sum_{1}^{n-1} e_{ii} + e_{nn} k'^{-1}) (1 - e_{nn-1} h') \cdot (1 - e_{n1} c_{nn} c_{1n}^{-1}) (1 - e_{n-11} c_{n-1n} c_{1n}^{-1}) \cdots (1 - e_{21} c_{2n} c_{1n}^{-1}).$

Then, we see that

$$r^{-1} = (1 + e_{21}c_{2n}c_{1n}^{-1}) \cdots (1 + e_{n-11}c_{n-1n}c_{1n}^{-1})(1 + e_{n1}c_{nn}c_{1n}^{-1}) \cdots (1 + e_{nn-1}h')(\sum_{1}^{n-1}e_{ii} + e_{nn}k').$$

(ii) $b^* = (1 - e_{21}c_{22}c_{12}^{-1})b(1 - e_{21}c_{22}c_{12}^{-1})^{-1} = (1 - e_{21}c_{22}c_{12}^{-1})b(1 + e_{21}c_{22}c_{12}^{-1}) = e_{11}c_1^* + e_{21}c_2^* + e_{12}c_{12} \ (c_1^*, c_2^* \in D).$ Here, b^* being a regular element, c_2^* can not be zero. And so, $(e_{11}c_2^* + e_{22})b^*(e_{11}c_2^* + e_{22})^{-1} = (e_{11}c_2^* + e_{22})b^*(e_{11}c_2^{*-1} + e_{22}) = e_{11}d^* + e_{12}c_2^*c_{12} + e_{21} \ (d^* \in D).$ Hence, it will be clear that $r = (e_{11}c_2^* + e_{22})(1 - e_{21}c_{22}c_{12}^{-1})$ is our desired one.

In the rest of our preliminaries, we shall assume that R is Galois and finite over S and $[S:Z] < \infty$. Then, to be easily seen, R is Galois and finite over $C'=C \cap S$ (cf. [5, Lemma]). And so, R is Galois and finite over $\sum_{i=1}^{n} e_{ij}C'$; this means that $V_R(\sum_{i=1}^{n} e_{ij}C')=D$ is Galois and finite over C'. Hence, by [1, Theorem 4] or [6, Theorem 1], D=C'[x, y] for some non-zero elements $x, y \in D$.¹⁰

Lemma 4. Let R be Galois and finite over S, $[S:Z] < \infty$, V a division ring, and n=2. If S contains an element $a = \sum_{i=1}^{n} e_{ij} d_{ij}$ such that $d_{12} \neq 0$, $d_{21}=1$ and $d_{22}=0$, then R=S[u'] for $u'=e_{21}x+e_{22}y$.

Proof. Set R' = S[u'], that is a simple ring by [4, Lemma 1.4]. Then, $au' = e_{11}d_{12}x + e_{12}d_{12}y$ and $u'a = e_{21}(xd_{11}+y) + e_{22}xd_{12}$ are non-zero elements of $R' \cap e_{11}R$ and $R' \cap e_{22}R$ respectively. And so, Lemma 2 yields $R' \supseteq \{e_{11}, e_{22}\}$. Hence, $e_{21} = e_{22}ae_{11}$ and $e_{12}d_{12} = e_{11}ae_{22}$ are contained in R', whence $d_{12} = (e_{21}+e_{12}d_{12})^2 \in R'$. Accordingly, $e_{12} = e_{12}d_{12} \cdot d_{12}^{-1} \in R'$. Moreover,

$$x = (e_{21} + e_{12}x)^2 = (e_{21} + e_{12}u'e_{12})^2 y = (e_{21} + e_{12}y)^2 = (e_{21} + e_{12}u'e_{22})^2 \\ \in R'.$$

We obtain therefore $R' = S[u'] = S[\{e_{ij}\}, x, y] = R$.

Lemma 5. Let R be Galois and finite over S, $[S:Z] < \infty$, and $n \ge 2$. If S contains an element $a = \sum_{i=1}^{n} e_{ij} d_{ij}$ such that $d_{1n-1} = x$, $d_{1n} = y$ and $d_{in} = 0$ $(i=2, \dots, n)$, then R = S[u] for $u = \sum_{i=1}^{n} e_{ii-1}$.

Proof. Set R' = S[u]. Then, by [3, Lemma 6 (i)], we see that

¹⁾ D is evidently a separable division algebra over C', and D=C'[x, y] can be regarded as a consequence of this fact too.

R is R'-*R*-irreducible. Hence, R' is simple by Lemma 1. Moreover, as $u^{n-1} = e_{n1}$, we see that $u^{k-1}au^{n-1} = e_{k1}y$ is a non-zero element of $R' \cap e_{kk}R$ $(k=1, \dots, n \text{ and } u^0=1)$. And so, Lemma 2 yields $R' \supseteq \{e_{11}, \dots, e_{nn}\}$. Hence, $e_{1n}y = e_{11}ae_{nn} \in R'$, whence $y = (u+e_{1n}y)^n$ and y^{-1} are contained in R'. Accordingly, $e_{1n} = e_{1n}yy^{-1} \in R'$ and $e_{ij} = (u+e_{1n})^{i-1}e_{1n}(u + e_{1n})^{n-j} \in R'$ $(i, j=1, \dots, n)$. And finally, $x = (u+e_{1n}x)^n \in R'$. We obtain therefore $R' = S[u] = S[\{e_{ij}\}, x, y] = R$.

Now we are at the position to prove the following:

Principal Theorem. Let R be Galois and finite over S. Then R=S[r] for some r if and only if R is commutative or $S \subseteq C$.

Proof. The only if part will be almost trivial. And so, we shall prove here the if part. For the case where $[S:Z] = \infty$ our assertion is contained in [4, Corollary 2.1], and for the case where R is commutative our assertion is well-known. Thus, in what follows, we shall prove that if $[S:Z] < \infty$ and $S \leq C$ then R = S[r] for some r. To this end, we shall distinguish two cases:

Case I: S contains merely diagonal elements. In this case, V contains $\{e_{11}, \dots, e_{nn}\}$, whence we see that the capacity of V coincides with that of R. And so, without loss of generality, we may assume that e_{ij} 's are all contained in V, whence $S \subseteq D$. Now, our assertion is a direct consequence of [4, Lemma 2.3].

Case II: S contains a non-diagonal element $b=\sum_{i=1}^{n} e_{ij}c_{ij}$. Here, without loss of generality, we may assume that $d_{1n} \neq 0$ (cf. [3, pp. 62-63]). We shall distinguish here further two cases:

1. n>2. By Lemma 3 (i), there exists a regular element r such that $a=rbr^{-1}=\sum_{i=1}^{n}e_{ij}d_{ij}$, $d_{1n-1}=x$, $d_{1n}=y$ and $d_{in}=0$ ($i\geq 2$). As we can easily see that $R(=rRr^{-1})$ is Galois and finite over rSr^{-1} and $C\cap rSr^{-1}=C\cap S$, Lemma 5 yields $R=rSr^{-1}[u]$ where $u=\sum_{i=2}^{n}e_{ii-1}$. Hence, we have $R=r^{-1}Rr=S[r^{-1}ur]$.

2. n=2. Since S is generated by regular elements, we may assume that b is a regular element. And then, by Lemma 3 (ii), there exists a regular element r such that $a=rbr^{-1}=\sum_{1}^{2}e_{ij}d_{ij}$, $d_{12}\neq 0$, $d_{21}=1$ and $d_{22}=0$. If V is not a division ring, then the capacity of V is equal to 2 (the capacity of R) and our assertion is contained in Case I. Thus, we may assume that V is a division ring. Now, noting that R is Galois and finite over rSr^{-1} , $C\cap S=C\cap rSr^{-1}$, and that $V_R(rSr^{-1})=rVr^{-1}$ is a division ring, we obtain $R=rSr^{-1}[u']$ for $u'=e_{21}x+e_{22}y$ by Lemma 4. It follows therefore $R=r^{-1}Rr$ $=S[r^{-1}u'r]$.

References

 T. Nagahara: On generating elements of Galois extensions of division rings, Math. J. Okayama Univ., 6, 181-190 (1957).

T. NAGAHARA

- [2] T. Nagahara: On generating elements of Galois extensions of division rings. III, Math. J. Okayama Univ., 7, 173-178 (1957).
- [3] T. Nagahara: On algebraic Galois extensions of simple rings, Math. J. Okayama Univ., 11, 59-65 (1962).
- [4] T. Nagahara and H. Tominaga: On Galois and locally Galois extensions of simple rings, Math J. Okayama Univ., 10, 143-166 (1961).
- [5] H. Tominaga: On a theorem of N. Jacobson, Proc. Japan Acad., 31, 653-654 (1955).
- [6] H. Tominaga and F. Kasch: On generating elements of simple rings, Proc. Japan Acad., 33, 187-189 (1957).